scholarly journals Case Studies on the Decommissioning of Nuclear Power Plants and Radioactive Waste Repository Abroad

2019 ◽  
Vol 19 (4) ◽  
pp. 151-156
Author(s):  
Namjin Cho ◽  
Dongsu Im ◽  
Hyunwook Bang ◽  
Teayeon Cho ◽  
Junglim Lee
Author(s):  
Juyoul Kim ◽  
Sukhoon Kim ◽  
Jin Beak Park ◽  
Sunjoung Lee

In the Korean LILW (Low- and Intermediate-Level radioactive Waste) repository at Gyeongju city, the degradation of organic wastes and the corrosion of metallic wastes and steel containers would be important processes that affect repository geochemistry, speciation and transport of radionuclides during the lifetime of a radioactive waste disposal facility. Gas is generated in association with these processes and has the potential threat to pressurize the repository, which can promote the transport of groundwater and gas, and consequently radionuclide transport. Microbial activity plays an important role in organic degradation, corrosion and gas generation through the mediation of reduction-oxidation reactions. The Korean research project on gas generation is being performed by Korea Radioactive Waste Management Corporation (hereafter referred to as “KRMC”). A full-scale in-situ experiment will form a central part of the project, where gas generation in real radioactive low-level maintenance waste from nuclear power plants will be done as an in-depth study during ten years at least. In order to examine gas generation issues from an LILW repository which is being constructed and will be completed by the end of December, 2012, two large-scale facilities for the gas generation experiment will be established, each equipped with a concrete container carrying on 16 drums of 200 L and 9 drums of 320 L of LILW from Korean nuclear power plants. Each container will be enclosed within a gas-tight and acid-proof steel tank. The experiment facility will be fully filled with ground water that provides representative geochemical conditions and microbial inoculation in the near field of repository. In the experiment, the design includes long-term monitoring and analyses for the rate and composition of gas generated, and aqueous geochemistry and microbe populations present at various locations through on-line analyzers and manual periodical sampling. A main schedule for establishing the experiment facility is as follows: Completion of the detailed design until the second quarter of the year 2010; Completion of the manufacture and on-site installation until the second quarter of the year 2011; Start of the operation and monitoring from the third quarter of the year 2011.


1981 ◽  
Vol 11 ◽  
Author(s):  
Roger Thunvik ◽  
Carol Braester

The possibility of permanent burial of radioactive waste from nuclear power plants, is studied in Sweden at the KBS (Nuclear Fuel Safety) - project. Definite repository sites have not yet been selected, but the general principles of construction regarding the layout have been devised (KBS).


Author(s):  
Takeshi Ishikura ◽  
Daiichiro Oguri

Abstract Minimizing the volume of radioactive waste generated during dismantling of nuclear power plants is a matter of great importance. In Japan waste forms buried in shallow burial disposal facility as low level radioactive waste (LLW) must be solidified by cement with adequate strength and must extend no harmful openings. The authors have developed an improved method to minimize radioactive waste volume by utilizing radioactive concrete and metal for mortar to fill openings in waste forms. Performance of a method to pre-place large sized metal or concrete waste and to fill mortar using small sized metal or concrete was tested. It was seen that the improved method substantially increases the filling ratio, thereby decreasing the numbers of waste containers.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 98
Author(s):  
Jaromír Marek

The article first summarizes case studies on the three basic types of treated water used in power plants and heating stations. Its main focus is Czechia as the representative of Eastern European countries. Water as the working medium in the power industry presents the three most common cycles—the first is make-up water for boilers, the second is cooling water and the third is represented by a specific type of water (e.g., liquid waste mixtures, primary and secondary circuits in nuclear power plants, turbine condensate, etc.). The water treatment technologies can be summarized into four main groups—(1) filtration (coagulation) and dosing chemicals, (2) ion exchange technology, (3) membrane processes and (4) a combination of the last two. The article shows the ideal industry-proven technology for each water cycle. Case studies revealed the economic, technical and environmental advantages/disadvantages of each technology. The percentage of technologies operated in energetics in Eastern Europe is briefly described. Although the work is conceived as an overview of water treatment in real operation, its novelty lies in a technological model of the treatment of turbine condensate, recycling of the cooling tower blowdown plus other liquid waste mixtures, and the rejection of colloidal substances from the secondary circuit in nuclear power plants. This is followed by an evaluation of the potential novel technologies and novel materials.


1985 ◽  
Vol 50 ◽  
Author(s):  
I. B. Plecas ◽  
Li. L. Mihajlovic ◽  
A. M. Kostadinovic

AbstractIn this paper an optimization of concrete container composition, used for storing low and intermediate level radioactive waste from nuclear power plants in Yugoslavia, is presented.Mechanical properties 37−52 MPa, permeability 1.07. 10−13 - 1.50. 10−11cm2 and leakage rate 3.66. 10−6 - 1.77. 10−4 cm/d for concrete made of commercial materials, were tested.


Sign in / Sign up

Export Citation Format

Share Document