common cycles
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 1)

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 98
Author(s):  
Jaromír Marek

The article first summarizes case studies on the three basic types of treated water used in power plants and heating stations. Its main focus is Czechia as the representative of Eastern European countries. Water as the working medium in the power industry presents the three most common cycles—the first is make-up water for boilers, the second is cooling water and the third is represented by a specific type of water (e.g., liquid waste mixtures, primary and secondary circuits in nuclear power plants, turbine condensate, etc.). The water treatment technologies can be summarized into four main groups—(1) filtration (coagulation) and dosing chemicals, (2) ion exchange technology, (3) membrane processes and (4) a combination of the last two. The article shows the ideal industry-proven technology for each water cycle. Case studies revealed the economic, technical and environmental advantages/disadvantages of each technology. The percentage of technologies operated in energetics in Eastern Europe is briefly described. Although the work is conceived as an overview of water treatment in real operation, its novelty lies in a technological model of the treatment of turbine condensate, recycling of the cooling tower blowdown plus other liquid waste mixtures, and the rejection of colloidal substances from the secondary circuit in nuclear power plants. This is followed by an evaluation of the potential novel technologies and novel materials.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2954
Author(s):  
Loïc Joud ◽  
Rui Da Silva ◽  
Daniela Chrenko ◽  
Alan Kéromnès ◽  
Luis Le Moyne

The objective of this work is to develop an optimal management strategy to improve the energetic efficiency of a hybrid electric vehicle. The strategy is built based on an extensive experimental study of mobility in order to allow trips recognition and prediction. For this experimental study, a dedicated autonomous acquisition system was developed. On working days, most trips are constrained and can be predicted with a high level of confidence. The database was built to assess the energy and power needed based on a static model for three types of cars. It was found that most trips could be covered by a 10 kWh battery. Regarding the optimization strategy, a novel real time capable energy management approach based on dynamic vehicle model was created using Energetic Macroscopic Representation. This real time capable energy management strategy is done by a combination of cycle prediction based on results obtained during the experimental study. The optimal control strategy for common cycles based on dynamic programming is available in the database. When a common cycle is detected, the pre-determined optimum strategy is applied to the similar upcoming cycle. If the real cycle differs from the reference cycle, the control strategy is adapted using quadratic programming. To assess the performance of the strategy, its resulting fuel consumption is compared to the global optimum calculated using dynamic programming and used as a reference; its optimality factor is above 98%.


2019 ◽  
Vol 239 (5-6) ◽  
pp. 895-916 ◽  
Author(s):  
Michael Scharnagl ◽  
Martin Mandler

Abstract We study the within-country dimension of financial cycles in the four largest euro area economies using tools from wavelet analysis. We focus on credit and house price cycles which are most commonly used to represent the financial cycle. With the exception of Germany, the variables contain important common cycles within each country close to the upper bound of business cycle length and beyond which can be interpreted as financial cycles. These cycles are closely linked to domestic cycles in real activity showing financial and real economic cycles as interconnected phenomena. For these common cycles, credit and house prices lag real GDP.


Sci ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 2 ◽  
Author(s):  
Alberto Carpinteri ◽  
Gianni Niccolini

The crucial stages in the geochemical evolution of the Earth’s crust, ocean, and atmosphere could be explained by the assumed low-energy nuclear reactions (LENR) that are triggered by seismic activity. LENR result in the fission of medium-weight elements accompanied by neutron emissions, involving Fe and Ni as starting elements, and C, N, O as resultants. Geochemical data and experimental evidences support the LENR hypothesis. A spectral analysis of the period 1955-2013 shows common cycles between interannual changes in atmospheric CO2 growth rate and global seismic-moment release, whereas the trending behavior of the atmospheric CO2 was in response to the anthropogenic emissions. Assuming a correlation between such seismic and atmospheric fluctuations, the latter could be explained by cycles of worldwide seismicity, which would trigger massively LENR in the Earth’s Crust. In this framework, LENR from active faults could be considered as a relevant cause of carbon formation and degassing of freshly-formed CO2 during seismic activity. However, further studies are necessary to validate the present hypothesis which, at the present time, mainly aims to stimulate debate on the models which regulates atmospheric CO2.


Sci ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 17
Author(s):  
Alberto Carpinteri ◽  
Gianni Niccolini

The crucial stages in the geochemical evolution of the Earth’s crust, ocean, and atmosphere could be explained by the assumed low-energy nuclear reactions (LENR) that are triggered by seismic activity. LENR result in the fission of medium-weight elements accompanied by neutron emissions, involving Fe and Ni as starting elements, and C, N, O as resultants. Geochemical data and experimental evidences support the LENR hypothesis. A spectral analysis of the period 1955-2013 shows common cycles between interannual changes in atmospheric CO2 growth rate and global seismic-moment release, whereas the trending behavior of the atmospheric CO2 was in response to the anthropogenic emissions. Assuming a correlation between such seismic and atmospheric fluctuations, the latter could be explained by cycles of worldwide seismicity, which would trigger massively LENR in the Earth’s Crust. In this framework, LENR from active faults could be considered as a relevant cause of carbon formation and degassing of freshly-formed CO2 during seismic activity. However, further studies are necessary to validate the present hypothesis which, at the present time, mainly aims to stimulate debate on the models which regulates atmospheric CO2.


Sci ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 2
Author(s):  
Alberto Carpinteri ◽  
Gianni Niccolini

The crucial stages in the geochemical evolution of the Earth’s crust, ocean, and atmosphere could be explained by the assumed low-energy nuclear reactions (LENR) that are triggered by seismic activity. LENR result in the fission of medium-weight elements accompanied by neutron emissions, involving Fe and Ni as starting elements, and C, N, O as resultants. Geochemical data and experimental evidences support the LENR hypothesis. A spectral analysis of the period 1955-2013 shows common cycles between interannual changes in atmospheric CO2 growth rate and global seismic-moment release, whereas the trending behavior of the atmospheric CO2 was in response to the anthropogenic emissions. Assuming a correlation between such seismic and atmospheric fluctuations, the latter could be explained by cycles of worldwide seismicity, which would trigger massively LENR in the Earth’s Crust. In this framework, LENR from active faults could be considered as a relevant cause of carbon formation and degassing of freshly-formed CO2 during seismic activity. However, further studies are necessary to validate the present hypothesis which, at the present time, mainly aims to stimulate debate on the models which regulates atmospheric CO2.


Sign in / Sign up

Export Citation Format

Share Document