precipitation strengthen
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2017 ◽  
Vol 30 (17) ◽  
pp. 6905-6925 ◽  
Author(s):  
Allison C. Michaelis ◽  
Jeff Willison ◽  
Gary M. Lackmann ◽  
Walter A. Robinson

The present study investigates changes in the location, frequency, intensity, and dynamical processes of North Atlantic extratropical cyclones with warming consistent with the IPCC Fifth Assessment Report (AR5) representative concentration pathway 8.5 (RCP8.5) scenario. The modeling, analysis, and prediction (MAP) climatology of midlatitude storminess (MCMS) feature-tracking algorithm was utilized to analyze 10 cold-season high-resolution atmospheric simulations over the North Atlantic region in current and future climates. Enhanced extratropical cyclone activity is most evident in the northeast North Atlantic and off the U.S. East Coast. These changes in cyclone activity are offset from changes in eddy kinetic energy and eddy heat flux. Investigation of the minimum SLP reached at each grid point reveals a lack of correspondence between the strongest events in the current and future simulations, indicating the future simulations produced a different population of storms. Examination of the percent change of storms in the storm-track region shows a reduction in the number of strong storms (i.e., those reaching a minimum SLP perturbation of at least −51 hPa). Storm-relative composites of strong and moderate storms show an increase in precipitation, associated with enhanced latent heat release and strengthening of the 900–700-hPa layer-average potential vorticity (PV). Other structural changes found for cyclones in a future climate include weakened upper-level PV for strong storms and a weakened near-surface potential temperature anomaly for moderate storms, demonstrating a change in storm dynamics. Furthermore, the impacts associated with extratropical cyclones, such as strong near-surface winds and heavy precipitation, strengthen and become more frequent with warming.


2010 ◽  
Vol 89-91 ◽  
pp. 112-117
Author(s):  
Chun Feng ◽  
Bing Zhe Bai ◽  
Y.K. Zheng ◽  
Hong Sheng Fang

The effect of four different niobium(From 0-0.1%) addition on the mechanical properties of allotriomorphic ferrite (FGBA)/ granular bainite (BG) air cooling bainitic steels has been investigated in this paper. The results show that (1) The 0.06%Nb steel acquired superior strength and toughness combination by applying 1250°C×60min solution treated, finish rolling at 850°C, and air cooling. The corresponding mechanical properties of the thick plate(30mm) is: σb>1050MPa, σ0.2>700MPa,δ5>17%,Akv>90J. (2) The addition of niobium refine the grain size of FGBA, and promoted the transformation of bainite structure. With the increase of niobium content, the refinement of ferrite grain and bainitic cluster is improved. (3) More refined M-A island is acquired by the small addition of niobium. According to M-A Analysis tools and transversal methods, with the rise of niobium content, the volume fraction of M-A island increase from 21% to 35%, and the average size of M-A island decrease from 1.1μm to 0.7um. (4)It is suggested that 0.02-0.06% niobium can improve the mechanical properties of the steel obviously. However, excess addition of Nb (0.1%) deteriorates the impact toughness obviously. (5)Under the synthetic roles of the microstructure refinement and precipitation strengthen, 60-160MPa yield strength improvement has been acquired in the low carbon air cooling bainitic steel by the small addition of niobium. (6)This steel is with low production cost since the alloying element Mn is cheap.


2010 ◽  
Vol 638-642 ◽  
pp. 3038-3043
Author(s):  
Chun Feng ◽  
Bing Zhe Bai ◽  
Y.K. Zheng ◽  
Hong Sheng Fang

The effect of four different niobium(From 0-0.1%) addition on the mechanical properties of allotriomorphic ferrite (FGBA)/ granular bainite (BG) air cooling bainitic steels has been investigated in this paper. The results show that (1) The 0.06%Nb steel acquired superior strength and toughness combination by applying 1250°C×60min solution treated, finish rolling at 850°C, and air cooling. The corresponding mechanical property of the thick plate (30mm) is: σb>1050MPa, σ0.2>700MPa, δ5>17%, Akv>90J. (2) The addition of niobium refine the grain size of FGBA, and promoted the transformation of bainite structure. With the increase of niobium content, the refinement of ferrite grain and bainitic cluster is improved. (3) More refined M-A island is acquired by the small addition of niobium. According to M-A Analysis tools and transversal methods, with the rise of niobium content, the volume fraction of M-A island increase from 21% to 35%, and the average size of M-A island decrease from 1.1μm to 0.7um. (4) It is suggested that 0.02-0.06% niobium can improve the mechanical properties of the steel obviously. However, excess addition of Nb (0.1%) deteriorates the impact toughness obviously. (5) Under the synthetic roles of the microstructure refinement and precipitation strengthen, 60-160MPa yield strength improvement has been acquired in the low carbon air cooling bainitic steel by the small addition of niobium. (6) This steel is with low production cost since the alloying element Mn is cheap.


Sign in / Sign up

Export Citation Format

Share Document