scholarly journals (ζ−m, ζm)-Type Algebraic Minimal Surfaces in Three-Dimensional Euclidean Space

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Erhan Güler ◽  
Ömer Kişi

We introduce the real minimal surfaces family by using the Weierstrass data (ζ−m,ζm) for ζ∈C, m∈Z≥2, then compute the irreducible algebraic surfaces of the surfaces family in three-dimensional Euclidean space E3. In addition, we propose that family has a degree number (resp., class number) 2m(m+1) in the cartesian coordinates x,y,z (resp., in the inhomogeneous tangential coordinates a,b,c).

Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 281
Author(s):  
Erhan Güler

We consider a family of higher degree Enneper minimal surface E m for positive integers m in the three-dimensional Euclidean space E 3 . We compute algebraic equation, degree and integral free representation of Enneper minimal surface for m = 1 , 2 , 3 . Finally, we give some results and relations for the family E m .


Filomat ◽  
2015 ◽  
Vol 29 (4) ◽  
pp. 725-737 ◽  
Author(s):  
Sonja Gorjanc ◽  
Ema Jurkin

In this paper we define and construct a new class of algebraic surfaces in three-dimensional Euclidean space generated by a curve and a congruence of circles. We study their properties and visualize them. For computing and plotting, we use the program Wolfram Mathematica.


2014 ◽  
Vol 70 (4) ◽  
pp. 319-337 ◽  
Author(s):  
S. T. Hyde ◽  
S. J. Ramsden ◽  
V. Robins

The concept of an orbifold is particularly suited to classification and enumeration of crystalline groups in the euclidean (flat) plane and its elliptic and hyperbolic counterparts. Using Conway's orbifold naming scheme, this article explicates conventional point, frieze and plane groups, and describes the advantages of the orbifold approach, which relies on simple rules for calculating the orbifold topology. The article proposes a simple taxonomy of orbifolds into seven classes, distinguished by their underlying topological connectedness, boundedness and orientability. Simpler `crystallographic hyperbolic groups' are listed, namely groups that result from hyperbolic sponge-like sections through three-dimensional euclidean space related to all known genus-three triply periodic minimal surfaces (i.e.theP,D,Gyroid,CLPandHsurfaces) as well as the genus-fourI-WPsurface.


2008 ◽  
Vol 17 (4) ◽  
pp. 619-625 ◽  
Author(s):  
JÓZSEF SOLYMOSI ◽  
CSABA D. TÓTH

Given a set of s points and a set of n2 lines in three-dimensional Euclidean space such that each line is incident to n points but no n lines are coplanar, we show that s = Ω(n11/4). This is the first non-trivial answer to a question recently posed by Jean Bourgain.


1956 ◽  
Vol 8 ◽  
pp. 256-262 ◽  
Author(s):  
J. De Groot

1. Introduction. We consider the group of proper orthogonal transformations (rotations) in three-dimensional Euclidean space, represented by real orthogonal matrices (aik) (i, k = 1,2,3) with determinant + 1 . It is known that this rotation group contains free (non-abelian) subgroups; in fact Hausdorff (5) showed how to find two rotations P and Q generating a group with only two non-trivial relationsP2 = Q3 = I.


Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2610-2628 ◽  
Author(s):  
Davood Naderi ◽  
Mehdi Tale-Masouleh ◽  
Payam Varshovi-Jaghargh

SUMMARYIn this paper, the forward kinematic analysis of 3-degree-of-freedom planar parallel robots with identical limb structures is presented. The proposed algorithm is based on Study's kinematic mapping (E. Study, “von den Bewegungen und Umlegungen,” Math. Ann.39, 441–565 (1891)), resultant method, and the Gröbner basis in seven-dimensional kinematic space. The obtained solution in seven-dimensional kinematic space of the forward kinematic problem is mapped into three-dimensional Euclidean space. An alternative solution of the forward kinematic problem is obtained using resultant method in three-dimensional Euclidean space, and the result is compared with the obtained mapping result from seven-dimensional kinematic space. Both approaches lead to the same maximum number of solutions: 2, 6, 6, 6, 2, 2, 2, 6, 2, and 2 for the forward kinematic problem of planar parallel robots; 3-RPR, 3-RPR, 3-RRR, 3-RRR, 3-RRP, 3-RPP, 3-RPP, 3-PRR, 3-PRR, and 3-PRP, respectively.


Sign in / Sign up

Export Citation Format

Share Document