random spheres
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

2017 ◽  
Vol 31 (01) ◽  
pp. 1650431 ◽  
Author(s):  
Ning Sun ◽  
Dilip Gersappe

We use a Lattice Boltzmann Model (LBM) in order to simulate diffuse-charge dynamics in Electric Double Layer Capacitors (EDLCs). Simulations are carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). The steric effect of concentrated solutions is considered by using a Modified Poisson–Nernst–Planck (MPNP) equations and compared with regular Poisson–Nernst–Planck (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. Our studies show how electrode morphology can be used to tailor the properties of supercapacitors.


Author(s):  
Justin B. Maughan ◽  
Christopher M. Sorensen ◽  
Amitabha Chakrabarti

2014 ◽  
Vol 14 (1) ◽  
pp. 143-157 ◽  
Author(s):  
H. Lindqvist ◽  
O. Jokinen ◽  
K. Kandler ◽  
D. Scheuvens ◽  
T. Nousiainen

Abstract. Light scattering by single, inhomogeneous mineral dust particles was simulated based on shapes and compositions derived directly from measurements of real dust particles instead of using a mathematical shape model. We demonstrate the use of the stereogrammetric shape retrieval method in the context of single-scattering modelling of mineral dust for four different dust types – all of them inhomogeneous – ranging from compact, equidimensional shapes to very elongated and aggregate shapes. The three-dimensional particle shapes were derived from stereo pairs of scanning-electron microscope images, and inhomogeneous composition was determined by mineralogical interpretation of localized elemental information based on energy-dispersive spectroscopy. Scattering computations were performed for particles of equal-volume diameters, from 0.08 μm up to 2.8 μm at 550 nm wavelength, using the discrete-dipole approximation. Particle-to-particle variation in scattering by mineral dust was found to be quite considerable and was not well reproduced by simplified shapes of homogeneous spheres, spheroids, or Gaussian random spheres. Effective-medium approximation results revealed that particle inhomogeneity should be accounted for even for small amounts of absorbing media (here up to 2% of the volume), especially when considering scattering by inhomogeneous particles at size parameters 3


2013 ◽  
Vol 13 (7) ◽  
pp. 18451-18488 ◽  
Author(s):  
H. Lindqvist ◽  
O. Jokinen ◽  
K. Kandler ◽  
D. Scheuvens ◽  
T. Nousiainen

Abstract. Light scattering by single, inhomogeneous mineral dust particles was simulated based on shapes and compositions derived directly from measurements of real dust particles instead of using a mathematical shape model. We demonstrate the use of stereogrammetric shape retrieval method in the context of single-scattering modelling of mineral dust for four different dust types – all of them inhomogeneous – ranging from compact, equidimensional shapes to very elongated and aggregate shapes. The three-dimensional particle shapes were derived from stereo pairs of scanning-electron microscope images, and inhomogeneous composition was determined by mineralogical interpretation of localized elemental information based on energy-dispersive spectroscopy. Scattering computations were performed for particle equal-volume diameters from 0.08 μm up to 2.8 μm at 550 nm wavelength, using the discrete-dipole approximation. Particle-to-particle variation in scattering by mineral dust was found to be quite considerable and was not well reproduced by simplified shapes of homogeneous spheres, spheroids, or Gaussian random spheres. Effective-medium approximation results revealed that particle inhomogeneity should be accounted even for small amounts of absorbing media (here up to 2% of the volume), especially when considering scattering by inhomogeneous particles at size parameters 3


2011 ◽  
Vol 11 (7) ◽  
pp. 3159-3171 ◽  
Author(s):  
J. Um ◽  
G. M. McFarquhar

Abstract. The projections of small ice crystals (with maximum dimension <50 μm) appear quasi-circular when imaged by probes on aircraft flying through cloud. Therefore, idealized models constructed to calculate their single-scattering properties have included quasi-spherical models such as Chebyshev particles, Gaussian random spheres, and droxtals. Recently, an ice analogue grown from sodium fluorosilicate solution on a glass substrate, with several columns emanating from a common center of mass, was shown to be quasi-circular when imaged by state-of-the-art cloud probes. In this study, a new idealized model, called the budding Bucky ball (3B) that resembles the shape of the small ice analogue is developed. The corresponding single-scattering properties (scattering phase function P11 and asymmetry parameter g) are computed by a ray-tracing code. Compared with previously used models, 3B scatters less light in the forward and more light in the lateral and backward directions. The Chebyshev particles and Gaussian random spheres show smooth and featureless P11, whereas droxtals and 3Bs, which have a faceted structure, show several peaks in P11 associated with angles of minimum deviation. Overall, the difference in the forward (lateral; backward) scattering between models are up to 22% (994%; 132%), 20% (510%; 101%), and 16% (146%; 156%) for small ice crystals with respective area ratios of 0.85, 0.77, and 0.69. The g for different models varies by up to 25%, 23%, and 19% for particles with area ratios of 0.85, 0.77, and 0.69, respectively. Because the single-scattering properties of small ice crystals depend both on the choice of the idealized model and the area ratios used to characterize the small ice crystals, higher resolution observations of small ice crystals or direct observations of their single-scattering properties are required.


2010 ◽  
Vol 10 (11) ◽  
pp. 28109-28149 ◽  
Author(s):  
J. Um ◽  
G. M. McFarquhar

Abstract. Small ice crystals (with maximum dimension <50 μm) appear quasi-circular when imaged by probes on aircraft flying through cloud. Therefore, idealized models constructed to calculate their single-scattering properties have included quasi-spherical models such as Chebyshev particles, Gaussian random spheres, and droxtals. Recently, an ice analogue grown from sodium fluorosilicate solution on a glass substrate, with several columns emanating from a common center of mass, was shown to be quasi-circular when imaged by state-of-the-art cloud probes. In this study, a new idealized model, called the budding Bucky ball (3B) that resembles the shape of the small ice analogue is developed. The corresponding single-scattering properties (scattering phase function P11 and asymmetry parameter g) are computed by a ray-tracing code. Compared with previosly used models, 3B scatters less light in the forward and more light in the lateral and backward directions. The Chebyshev particles and Gaussian random spheres show smooth and featureless P11, whereas droxtals and 3Bs, which have a faceted structure, show several peaks in P11 associated with angles of minimum deviation. Overall, the difference in the forward (lateral; backward) scattering between models are up to 22% (994%; 132%), 20% (510%; 101%), and 16% (146%; 156%) for small ice crystals with repective area ratios of 0.85, 0.77, and 0.69. The g for different models varies by up to 25%, 23%, and 19% for particles with area ratios of 0.85, 0.77, and 0.69, respectively. Becuase the single-scattering properties of small ice crystals depend both on the choice of the idealized model and the area ratios used to characterize the small ice crystals, higher resolution observations of small ice crystals or direct observations of their single-scattering properties are required.


2009 ◽  
Vol 1219 ◽  
Author(s):  
Peter Y. Wong ◽  
Brendan P. O'Brien ◽  
Bruce Panilaitis ◽  
Christian Irwin

AbstractFormation of carbon nanospheres is typically relegated to two costly methods. Chemical vapor deposition produces uniform spheres safely anchored to a substrate but at the cost of being slow and expensive to run. Arc discharge of a carbon target produces soot containing a low density of random spheres that must be laboriously sorted. An alternative approach is to fabricate carbon nanospheres through the pyrolysis of organic feedstock. This paper presents the findings from an investigation into using pectin as a pre-cursor material for pyrolysis. The pectin is combined with different saccharides - sucrose, dextrose, and fructose and processed in aqueous solution until a gel set. The gel is then thermally processed in a nitrogen environment at 500 °C. The resultant carbon material is examined under SEM. Images confirm the formation of nanospheres and other microscale and nanoscale structures. The pectin, a naturally derived product from plant materials, is a renewable source of materials which can be used to form nanotechnologies for many energy-related applications.


Sign in / Sign up

Export Citation Format

Share Document