Carbon Nanospheres Fabricated by Pyrolysis of Micelles Formed in Pectin Gels

2009 ◽  
Vol 1219 ◽  
Author(s):  
Peter Y. Wong ◽  
Brendan P. O'Brien ◽  
Bruce Panilaitis ◽  
Christian Irwin

AbstractFormation of carbon nanospheres is typically relegated to two costly methods. Chemical vapor deposition produces uniform spheres safely anchored to a substrate but at the cost of being slow and expensive to run. Arc discharge of a carbon target produces soot containing a low density of random spheres that must be laboriously sorted. An alternative approach is to fabricate carbon nanospheres through the pyrolysis of organic feedstock. This paper presents the findings from an investigation into using pectin as a pre-cursor material for pyrolysis. The pectin is combined with different saccharides - sucrose, dextrose, and fructose and processed in aqueous solution until a gel set. The gel is then thermally processed in a nitrogen environment at 500 °C. The resultant carbon material is examined under SEM. Images confirm the formation of nanospheres and other microscale and nanoscale structures. The pectin, a naturally derived product from plant materials, is a renewable source of materials which can be used to form nanotechnologies for many energy-related applications.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Yasumitsu Miyata ◽  
Kohei Mizuno ◽  
Hiromichi Kataura

We investigated the purity and defects of single-wall carbon nanotubes (SWCNTs) produced by various synthetic methods including chemical vapor deposition, arc discharge, and laser ablation. The SWCNT samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Raman spectroscopy. Quantitative analysis of SEM images suggested that the G-band Raman intensity serves as an index for the purity. By contrast, the intensity ratio of G-band to D-band (G/D ratio) reflects both the purity and the defect density of SWCNTs. The combination of G-band intensity and G/D ratio is useful for a quick, nondestructive evaluation of the purity and defect density of a SWCNT sample.


Author(s):  
L. Wan ◽  
R. F. Egerton

INTRODUCTION Recently, a new compound carbon nitride (CNx) has captured the attention of materials scientists, resulting from the prediction of a metastable crystal structure β-C3N4. Calculations showed that the mechanical properties of β-C3N4 are close to those of diamond. Various methods, including high pressure synthesis, ion beam deposition, chemical vapor deposition, plasma enhanced evaporation, and reactive sputtering, have been used in an attempt to make this compound. In this paper, we present the results of electron energy loss spectroscopy (EELS) analysis of composition and bonding structure of CNX films deposited by two different methods.SPECIMEN PREPARATION Specimens were prepared by arc-discharge evaporation and reactive sputtering. The apparatus for evaporation is similar to the traditional setup of vacuum arc-discharge evaporation, but working in a 0.05 torr ambient of nitrogen or ammonia. A bias was applied between the carbon source and the substrate in order to generate more ions and electrons and change their energy. During deposition, this bias causes a secondary discharge between the source and the substrate.


2014 ◽  
Vol 617 ◽  
pp. 816-822 ◽  
Author(s):  
Naiqin Zhao ◽  
Jian Wang ◽  
Chunsheng Shi ◽  
Enzuo Liu ◽  
Jiajun Li ◽  
...  

2010 ◽  
Vol 431-432 ◽  
pp. 466-469
Author(s):  
Dong Can Zhang ◽  
Bin Shen ◽  
Fang Hong Sun ◽  
Ming Chen ◽  
Zhi Ming Zhang

The diamond and diamond-like carbon (DLC) films were deposited on the cobalt cemented tungsten carbide (WC-Co) cutting tools respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode. The scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD) and Raman spectroscopy were used to characterize the as-deposited diamond and DLC films. To evaluate their cutting performance, comparative turning tests were conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The research results exhibited that diamond and DLC coated inserts had great advantages in cutting tests compared to uncoated insert. The flank wear of the CVD diamond coated insert maintained a very low value about 50μm before the cutting tool failure occurred. For the DLC coated insert, its flank wear always maintained a nearly constant value of 70~200μm during whole 45 minutes turning process. The flank wear of CVD diamond coated insert was lower than that of DLC coated insert before diamond films peeling off.


2021 ◽  
Vol 4 (4) ◽  
pp. 377-385
Author(s):  
Volodymyr M. Lucenko ◽  
Dmytro O. Progonov

Reliable protection of confidential data processed in critical information infrastructure elements of public institutions and private organizations is topical task today. Of particular interest are methods to prevent the leakage of confidential data by localizing informative (dangerous) signals that both carry an informative component, and have a signal level higher than predefined threshold. The increase in signal energy from personal computers is caused by increasing of its transistors switching speed. Modern passive shielding methods for secured computers, similar to the well-known program TEMPEST, require either costly and large shielding units or technological simplification by using of low-cost fragmentary shielding of computer’s individual elements. Therefore, localization of side electromagnetic radiation produced by personal computer is needed. The paper presents a cost-effective approach to reducing the level of computer’s electromagnetic radiation by passive method. The radiation are localized and measured by its estimation on personal computer’s elements, namely unshielded communication lines between video processor and a monitor, fragments of electric tracks on motherboards, etc. During experiments authors used ad-hoc miniature electric (ball antenna) and magnetic (Hall sensor) antennas connected to selective voltmeters. This approach significantly reduces the cost of equipment and measurements as well as requirements to analytics’ qualification for improving computer’s protection. Also, the alternative approach for computer protection is proposed. The approach is based on image content protection by distorting the image on the monitor instead of reducing electromagnetic radiation caused by signals from the monitor. The protection includes image scrambling using Arnold transform that randomly “shuffle” the lines in each frame.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2279 ◽  
Author(s):  
Hai Tan ◽  
Deguo Wang ◽  
Yanbao Guo

Graphene, as the earliest discovered two-dimensional (2D) material, possesses excellently physical and chemical properties. Vast synthetic strategies, including chemical vapor deposition, mechanical exfoliation, and chemical reduction, are proposed. In this paper, a method to synthesize multilayer graphene in a semi-opened environment is presented by introducing arc-discharge plasma technology. Compared with previous technologies, the toxic gases and hazardous chemical components are not generated in the whole process. The synthesized carbon materials were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction, and Raman spectra technologies. The paper offers an idea to synthesize multilayer graphene in a semi-opened environment, which is a development to produce graphene with arc-discharge plasma.


Crystals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 395 ◽  
Author(s):  
Víctor Herrera ◽  
Tomás Díaz-Becerril ◽  
Eric Reyes-Cervantes ◽  
Godofredo García-Salgado ◽  
Reina Galeazzi ◽  
...  

Tantalum-doped ZnO structures (ZnO:Ta) were synthesized, and some of their characteristics were studied. ZnO material was deposited on silicon substrates by using a hot filament chemical vapor deposition (HFCVD) reactor. The raw materials were a pellet made of a mixture of ZnO and Ta2O5 powders, and molecular hydrogen was used as a reactant gas. The percentage of tantalum varied from 0 to 500 mg by varying the percentages of tantalum oxide in the mixture of the pellet source, by holding a fixed amount of 500 mg of ZnO in all experiments. X-ray diffractograms confirmed the presence of zinc oxide in the wurtzite phase, and metallic zinc with a hexagonal structure, and no other phase was detected. Displacements to lower angles of reflection peaks, compared with those from samples without doping, were interpreted as the inclusion of the Ta atoms in the matrix of the ZnO. This fact was confirmed by energy dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD) measurements. From scanning electron microscopy (SEM) images from undoped samples, mostly micro-sized semi-spherical structures were seen, while doped samples displayed a trend to grow as nanocrystalline rods. The presence of tantalum during the synthesis affected the growth direction. Green photoluminescence was observed by the naked eye when Ta-doped samples were illuminated by ultraviolet radiation and confirmed by photoluminescence (PL) spectra. The PL intensity on the Ta-doped ZnO increased from those undoped samples up to eight times.


Sign in / Sign up

Export Citation Format

Share Document