cold air outbreaks
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 44)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 48 (19) ◽  
Author(s):  
C. Seethala ◽  
Paquita Zuidema ◽  
James Edson ◽  
Michael Brunke ◽  
Gao Chen ◽  
...  

2021 ◽  
Vol 2 (3) ◽  
pp. 867-891
Author(s):  
Marcel Meyer ◽  
Iuliia Polkova ◽  
Kameswar Rao Modali ◽  
Laura Schaffer ◽  
Johanna Baehr ◽  
...  

Abstract. Recent advances in visual data analysis are well suited to gain insights into dynamical processes in the atmosphere. We apply novel methods for three-dimensional (3-D) interactive visual data analysis to investigate marine cold air outbreaks (MCAOs) and polar lows (PLs) in the recently released ERA5 reanalysis data. Our study aims at revealing 3-D perspectives on MCAOs and PLs in ERA5 and at improving the diagnostic indices to capture these weather events in long-term assessments on seasonal and climatological timescales. Using an extended version of the open-source visualization framework Met.3D, we explore 3-D perspectives on the structure and dynamics of MCAOs and PLs and relate these to previously used diagnostic indices. Motivated by the 3-D visual analysis of selected MCAO and PL cases, we conceptualize alternative index variants that capture the vertical extent of MCAOs and their distance to the dynamical tropopause. The new index variants are evaluated, along with previously used indices, with a focus on their skill as a proxy for the occurrence of PLs. Testing the association of diagnostic indices with observed PLs in the Barents and the Nordic seas for the years 2002–2011 shows that the new index variants based on the vertical structure of cold air masses are more skilful in distinguishing the times and locations of PLs, compared with conventional indices based on sea–air temperature difference only. We thus propose using the new diagnostics for further analyses in climate predictions and climatological studies. The methods for visual data analysis applied here are available as an open-source tool and can be used generically for interactive 3-D visual analysis of atmospheric processes in ERA5 and other gridded meteorological data.


2021 ◽  
Vol 21 (15) ◽  
pp. 12049-12067
Author(s):  
Florian Tornow ◽  
Andrew S. Ackerman ◽  
Ann M. Fridlind

Abstract. Marine cold air outbreaks (CAOs) commonly form overcast cloud decks that transition into broken cloud fields downwind, dramatically altering the local radiation budget. In this study, we investigate the impact of frozen hydrometeors on these transitions. We focus on a CAO case in the NW Atlantic, the location of the multi-year flight campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment). We use MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, version 2) reanalysis fields to drive large eddy simulations with mixed-phase two-moment microphysics in a Lagrangian framework. We find that transitions are triggered by substantial rain (rainwater paths >25 g m−2), and only simulations that allow for aerosol depletion result in sustained breakups, as observed. Using a range of diagnostic ice nucleating particle concentrations, Ninp, we find that increasing ice progressively accelerates transitions, thus abbreviating the overcast state. Ice particles affect the cloud-topped boundary layer evolution, primarily through riming-related processes prior to substantial rain, leading to (1) a reduction in cloud liquid water, (2) early consumption of cloud condensation nuclei, and (3) early and light precipitation cooling and moistening below cloud. We refer to these three effects collectively as “preconditioning by riming”. Greater boundary layer aerosol concentrations available as cloud condensation nuclei (CCN) delay the onset of substantial rain. However, cloud breakup and low CCN concentration final stages are found to be inevitable in this case, due, primarily, to liquid water path buildup. An ice-modulated cloud transition speed suggests the possibility of a negative cloud–climate feedback. To address prevailing uncertainties in the model representation of mixed-phase processes, the magnitude of ice formation and riming impacts and, thereby, the strength of an associated negative cloud–climate feedback process, requires further observational evaluation by targeting riming hot spots with in situ imaging probes that allow for both the characterization of ice particles and abundance of supercooled droplets.


2021 ◽  
Vol 9 (8) ◽  
pp. 824
Author(s):  
Dongxue Mo ◽  
Jian Li ◽  
Yijun Hou

Storm surges and disastrous waves induced by cold air outbreaks, a type of severe weather system, often impact the coastal economic development. Using the Climate Forecast System Reanalysis wind product and the Coupled Ocean–Atmosphere–Wave–Sediment Transport model, we developed a coupled numerical model and applied it to examine the interaction between surface gravity waves and ocean currents during cold air outbreaks in two case studies in the northern East China Sea. The results revealed that wave–current interactions improved the simulation accuracy, especially the water level, as verified by tidal station measurements. We conducted sensitivity experiments to explore the spatiotemporal variation of the impact of wave–current interactions on storm surges and waves in the northern East China Sea, away from the coastline. The wave-induced surge (up to 0.4 m) and the wave-induced current (up to 0.5 m/s) were found to be related to the difference between wave direction and current direction. The significant wave height difference (up to 0.5 m) was sensitive to the storm surge nearshore and sensitive to the current field offshore, while the mean wave direction change (up to 40°) was more sensitive to the current field than to the storm surge. Additionally, the wave–current interaction regulated the momentum balance and wave action balance, respectively. By comparison, the momentum residuals of pressure gradient, Coriolis force, Coriolis–Stokes force, and bottom stress, which were pronounced in different areas, were modulated more significantly by the wave effect than other terms. The dominant mechanisms of wave–current interactions on waves included the current-induced modification of energy generation caused by wind input, the current-induced modification of energy dissipation caused by whitecapping, and the current-induced wave advection.


2021 ◽  
Author(s):  
Erik T. Smith ◽  
Scott Sheridan

Abstract Historical and future simulated temperature data from five climate models in the Coupled Model Intercomparing Project Phase 6 (CMIP6) are used to understand how climate change might alter cold air outbreaks (CAOs) in the future. Three different Shared Socioeconomic Pathways (SSPs), SSP 1 – 2.6, SSP 2 – 4.5, and SSP 5 – 8.5 are examined to identify potential fluctuations in CAOs across the globe between 2015 and 2054. Though CAOs may remain persistent or even increase in some regions through 2040, all five climate models show CAOs disappearing by 2054 based on current climate percentiles. Climate models were able to accurately simulate the spatial distribution and trends of historical CAOs, but there were large errors in the simulated interannual frequency of CAOs in the North Atlantic and North Pacific. Fluctuations in complex processes, such as Atlantic Meridional Overturning Circulation, may be contributing to each model’s inability to simulate historical CAOs in these regions.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jinlong Huang ◽  
Peter Hitchcock ◽  
Amanda C. Maycock ◽  
Christine M. McKenna ◽  
Wenshou Tian

AbstractSevere cold air outbreaks have significant impacts on human health, energy use, agriculture, and transportation. Anomalous behavior of the Arctic stratospheric polar vortex provides an important source of subseasonal-to-seasonal predictability of Northern Hemisphere cold air outbreaks. Here, through reanalysis data for the period 1958–2019 and climate model simulations for preindustrial conditions, we show that weak stratospheric polar vortex conditions increase the risk of severe cold air outbreaks in mid-latitude East Asia by 100%, in contrast to only 40% for moderate cold air outbreaks. Such a disproportionate increase is also found in Europe, with an elevated risk persisting more than three weeks. By analysing the stream of polar cold air mass, we show that the polar vortex affects severe cold air outbreaks by modifying the inter-hemispheric transport of cold air mass. Using a novel method to assess Granger causality, we show that the polar vortex provides predictive information regarding severe cold air outbreaks over multiple regions in the Northern Hemisphere, which may help with mitigating their impact.


2021 ◽  
Author(s):  
Irina Statnaia ◽  
Alexey Karpechko ◽  
Heikki Järvinen

<p>The weather-dependent planning and decision-making benefit greatly from subseasonal to seasonal (S2S) weather predictions made for up to six weeks ahead. At this timescale anomalies in the extratropical stratospheric circulation, which can last for several weeks in the Northern Hemisphere during winter, are known to affect climate at the surface and can extend the predictability of tropospheric weather conditions. The downward influence of the stratospheric circulation anomalies on the troposphere is projected by the Northern Annular Mode (NAM). Because of the long persistence of stratospheric anomalies beyond typical weather timescale, the increase in forecast skill is possible for the regions influenced by the atmospheric circulation variability associated with NAM based on the stratospheric predictor.</p><p>In this study, we investigate the predictability of the Eurasian severe and persistent cold spells during winter and its dependence on the state of the stratosphere. We first detected the below-normal surface temperature events over northern Eurasia (cold spells) in the ERA5 re-analysis. Then, to assess the predictability of these cold spells and to evaluate the skill in the probabilistic re-forecasts we divided them into groups associated with different stratospheric circulation anomalies which took place prior to the below-normal temperature events. When the stratospheric vortex is strong it is not expected to favor cold air outbreaks in this region. Therefore, in these cases, the cold air outbreaks result from internal tropospheric dynamics and their predictability is limited by the chaotic behavior of the weather systems. On the other hand, the weakening of the vortex is characterized by a more negative NAM index. This weakening is often followed by an equatorward shift of the tropospheric jets, an increase in the frequency of occurrence of tropospheric blocking, and cold air outbreaks over northern Eurasia. In these cases, the stratospheric vortex weakening can lead to the statistically significant improvement of the skill of cold air outbreak forecasts in case if the forecast model is capable of properly representing the coupling between the stratosphere and the troposphere. We show that the predictability of cold spells in the European Centre for Medium-range Weather Forecasts (ECMWF) model is enhanced under weak vortex conditions starting from week 3 before the event. We also evaluate how the surface predictability is affected by model imperfections by comparing the predictability across different S2S models.</p>


Sign in / Sign up

Export Citation Format

Share Document