dam1 complex
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 220 (6) ◽  
Author(s):  
Harinath Doodhi ◽  
Taciana Kasciukovic ◽  
Lesley Clayton ◽  
Tomoyuki U. Tanaka

To establish chromosome biorientation, aberrant kinetochore–microtubule interaction must be resolved (error correction) by Aurora B kinase. Aurora B differentially regulates kinetochore attachment to the microtubule plus end and its lateral side (end-on and lateral attachment, respectively). However, it is still unclear how kinetochore–microtubule interactions are exchanged during error correction. Here, we reconstituted the budding yeast kinetochore–microtubule interface in vitro by attaching the Ndc80 complexes to nanobeads. These Ndc80C nanobeads recapitulated in vitro the lateral and end-on attachments of authentic kinetochores on dynamic microtubules loaded with the Dam1 complex. This in vitro assay enabled the direct comparison of lateral and end-on attachment strength and showed that Dam1 phosphorylation by Aurora B makes the end-on attachment weaker than the lateral attachment. Similar reconstitutions with purified kinetochore particles were used for comparison. We suggest the Dam1 phosphorylation weakens interaction with the Ndc80 complex, disrupts the end-on attachment, and promotes the exchange to a new lateral attachment, leading to error correction.


2020 ◽  
Vol 30 (22) ◽  
pp. 4491-4499.e5 ◽  
Author(s):  
Abraham Gutierrez ◽  
Jae ook Kim ◽  
Neil T. Umbreit ◽  
Charles L. Asbury ◽  
Trisha N. Davis ◽  
...  
Keyword(s):  

2020 ◽  
Vol 64 (2) ◽  
pp. 359-370
Author(s):  
Shaowen Wu ◽  
Ekaterina L. Grishchuk

Abstract In a dividing eukaryotic cell, proper chromosome segregation requires the dynamic yet persistent attachment of kinetochores to spindle microtubules. In the budding yeast Saccharomyces cerevisiae, this function is especially crucial because each kinetochore is attached to a single microtubule; consequently, loss of attachment could lead to unrecoverable chromosome loss. The highly specialized heterodecameric Dam1 protein complex achieves this coupling by assembling into a microtubule-encircling ring that glides near the end of the dynamic microtubule to mediate chromosome motion. In recent years, we have learned a great deal about the structural properties of the Dam1 heterodecamer, its mechanism of self-assembly into rings, and its tethering to the kinetochore by the elongated Ndc80 complex. The most remarkable progress has resulted from defining the fine structures of helical bundles within Dam1 heterodecamer. In this review, we critically analyze structural observations collected by diverse approaches with the goal of obtaining a unified view of Dam1 ring architecture. A considerable consistency between different studies supports a coherent model of the circular core of the Dam1 ring. However, there are persistent uncertainties about the composition of ring protrusions and flexible extensions, as well as their roles in mediating ring core assembly and interactions with the Ndc80 complex and microtubule.


2018 ◽  
Author(s):  
Harinath Doodhi ◽  
Taciana Kasciukovic ◽  
Lesley Clayton ◽  
Tomoyuki U. Tanaka

AbstractFor proper chromosome segregation, sister kinetochores must interact with microtubules from opposite spindle poles; this is called bi-orientation. To establish bi-orientation prior to chromosome segregation, any aberrant kinetochore–microtubule interaction must be resolved (error correction) by Aurora B kinase that phosphorylates outer kinetochore components. Aurora B differentially regulates kinetochore attachment to the microtubule plus end and its lateral side (end-on and lateral attachment, respectively). However, it is still not fully understood how kinetochore–microtubule interactions are exchanged during error correction. Here we reconstituted the kinetochore–microtubule interface of budding yeast in vitro by attaching the Ndc80 complexes (Ndc80C) to nanobeads. These Ndc80C–nanobeads recapitulated in vitro the lateral and end-on attachments of authentic kinetochores, on dynamic microtubules loaded with the Dam1 complex. This in vitro assay enabled the direct comparison of lateral and end-on attachment strength and showed that Dam1 phosphorylation by Aurora B makes the end-on attachment weaker than the lateral attachment. We suggest that the Dam1 phosphorylation weakens interaction with the Ndc80 complex, disrupts the end-on attachment and promotes the exchange to a new lateral attachment, leading to error correction. Our study reveals a fundamental mechanism of error correction for establishment of bi-orientation.


2018 ◽  
Author(s):  
Hiral Shah ◽  
Kanika Rawat ◽  
Harsh Ashar ◽  
Rajesh Patkar ◽  
Johannes Manjrekar

AbstractThe outer kinetochore DASH/DAM complex ensures proper spindle structure and chromosome segregation. While DASH complex protein requirement diverges among different yeasts, its role in filamentous fungi has not been investigated so far. We studied the dynamics and role of middle (Mis12) and outer (Dam1 and Ask1) kinetochore proteins in the filamentous fungal pathogen, Magnaporthe oryzae, which undergoes multiple cell cycle linked developmental transitions. Both Dam1 and Ask1, unlike Mis12, were recruited to the nucleus specifically during mitosis. While Dam1 was not required for viability, loss of its function (dam1Δ mutant) delayed mitotic progression, resulting in impaired conidial and hyphal development in Magnaporthe. Intriguingly, both Dam1 and Ask1 also localised to the hyphal tips, in the form of punctae oscillating back and forth from the growing ends, suggesting that Magnaporthe DASH complex proteins may play a non-canonical role in polarised growth during interphase, in addition to their function in nuclear segregation during mitosis. Impaired appressorial (infection structure) development and function in the dam1Δ mutant suggest that fungus-specific Dam1 complex proteins could be an attractive target for a novel anti-fungal strategy.Summary StatementDASH complex proteins are differentially recruited to the nucleus during cell division and are intriguingly involved in polarised growth during development and differentiation in the rice blast fungus.


Science ◽  
2018 ◽  
Vol 360 (6388) ◽  
pp. 552-558 ◽  
Author(s):  
Simon Jenni ◽  
Stephen C. Harrison
Keyword(s):  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jae ook Kim ◽  
Alex Zelter ◽  
Neil T Umbreit ◽  
Athena Bollozos ◽  
Michael Riffle ◽  
...  

Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex’s ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital.


2017 ◽  
Author(s):  
Jae ook Kim ◽  
Alex Zelter ◽  
Neil T Umbreit ◽  
Athena Bollozos ◽  
Michael Riffle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document