ndc80 complex
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 14)

H-INDEX

30
(FIVE YEARS 2)

Oncoscience ◽  
2021 ◽  
Vol 8 ◽  
pp. 134-153
Author(s):  
Leena J. Laine ◽  
Jenni H.E. Mäki-Jouppila ◽  
Emma Kutvonen ◽  
Pekka Tiikkainen ◽  
Thomas K.M. Nyholm ◽  
...  

2021 ◽  
Vol 118 (48) ◽  
pp. e2104459118
Author(s):  
Qianhua Dong ◽  
Xue-lei Liu ◽  
Xiao-hui Wang ◽  
Yu Zhao ◽  
Yu-hang Chen ◽  
...  

Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain–deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.


2021 ◽  
Author(s):  
Jingxun Chen ◽  
Elçin Ünal

AbstractThis review describes the current models for how the subunit abundance of the Ndc80 complex, a key kinetochore component, is regulated in budding yeast and metazoan meiosis. The past decades of kinetochore research have established the Ndc80 complex to be a key microtubule interactor and a central hub for regulating chromosome segregation. Recent studies further demonstrate that Ndc80 is the limiting kinetochore subunit that dictates the timing of kinetochore activation in budding yeast meiosis. Here, we discuss the molecular circuits that regulate Ndc80 protein synthesis and degradation in budding yeast meiosis and compare the findings with those from metazoans. We envision the regulatory principles discovered in budding yeast to be conserved in metazoans, thereby providing guidance into future investigations on kinetochore regulation in human health and disease.


2020 ◽  
Vol 64 (2) ◽  
pp. 337-347
Author(s):  
Amit Rahi ◽  
Manas Chakraborty ◽  
Kristen Vosberg ◽  
Dileep Varma

Abstract The faithful segregation of duplicated sister chromatids rely on the remarkable ability of kinetochores to sustain stable load bearing attachments with the dynamic plus ends of kinetochore–microtubules (kMTs). The outer layer of the kinetochore recruits several motor and non-motor microtubule-associated proteins (MAPs) that help the kinetochores establish and maintain a load bearing dynamic attachment with kMTs. The primary kMT-binding protein, the Ndc80 complex (Ndc80c), which is highly conserved among diverse organisms from yeast to humans, performs this essential function with assistance from other MAPs. These MAPs are not an integral part of the kinetochore, but they localize to the kinetochore periodically throughout mitosis and regulate the strength of the kinetochore microtubule attachments. Here, we attempt to summarize the recent advances that have been made toward furthering our understanding of this co-operation between the Ndc80c and these MAPs, focusing on the spindle and kinetochore-associated 1 (Ska1) complex (Ska1c) and Cdc10-dependent transcript 1 (Cdt1) in humans.


2020 ◽  
Author(s):  
Ekaterina V. Tarasovetc ◽  
Praveen Kumar Allu ◽  
Iain M. Cheeseman ◽  
Ben E. Black ◽  
Ekaterina L. Grishchuk

AbstractAssembly of a functional kinetochore is critical for accurate chromosome segregation. Hierarchical recruitment of soluble components during kinetochore assembly is a highly regulated mitotic event, but the underlying steps are not well understood. In yeast and Xenopus egg extracts, soluble kinetochore components can spontaneously assemble into microtubule-binding subcomplexes. Although the molecular interactions among specific kinetochore components are evolutionary conserved in eukaryotes, it remains unclear which de novo assembly steps are permitted in extracts of mitotic human cells. By analyzing the recruitment of GFP-fused kinetochore proteins from human mitotic cell extracts to inner kinetochore components immobilized on microbeads, we reconstructed the interaction between CENP-C and CENP-A–containing nucleosomes. However, subsequent phospho-dependent binding of the Mis12 complex was less efficient, whereas binding of the Ndc80 complex was inhibited. Consistently, the microtubule-binding activity of native kinetochore components, as well as those assembled using a combination of native and recombinant human proteins, was weaker than that of recombinant Ndc80 complex alone. Such inhibitory mechanisms that prevent interactions between different kinetochore components are likely to guard against spurious formation of kinetochores in the cytosol of mitotic human cells, and imply existence of specific regulatory mechanisms that permit these interactions at the assembling kinetochore.


2020 ◽  
Vol 64 (2) ◽  
pp. 359-370
Author(s):  
Shaowen Wu ◽  
Ekaterina L. Grishchuk

Abstract In a dividing eukaryotic cell, proper chromosome segregation requires the dynamic yet persistent attachment of kinetochores to spindle microtubules. In the budding yeast Saccharomyces cerevisiae, this function is especially crucial because each kinetochore is attached to a single microtubule; consequently, loss of attachment could lead to unrecoverable chromosome loss. The highly specialized heterodecameric Dam1 protein complex achieves this coupling by assembling into a microtubule-encircling ring that glides near the end of the dynamic microtubule to mediate chromosome motion. In recent years, we have learned a great deal about the structural properties of the Dam1 heterodecamer, its mechanism of self-assembly into rings, and its tethering to the kinetochore by the elongated Ndc80 complex. The most remarkable progress has resulted from defining the fine structures of helical bundles within Dam1 heterodecamer. In this review, we critically analyze structural observations collected by diverse approaches with the goal of obtaining a unified view of Dam1 ring architecture. A considerable consistency between different studies supports a coherent model of the circular core of the Dam1 ring. However, there are persistent uncertainties about the composition of ring protrusions and flexible extensions, as well as their roles in mediating ring core assembly and interactions with the Ndc80 complex and microtubule.


2020 ◽  
Vol 12 (7) ◽  
pp. 486-498 ◽  
Author(s):  
Ping Gui ◽  
Divine M Sedzro ◽  
Xiao Yuan ◽  
Sikai Liu ◽  
Mohan Hei ◽  
...  

Abstract Error-free mitosis depends on accurate chromosome attachment to spindle microtubules, which is monitored by the spindle assembly checkpoint (SAC) signaling. As an upstream factor of SAC, the precise and dynamic kinetochore localization of Mps1 kinase is critical for initiating and silencing SAC signaling. However, the underlying molecular mechanism remains elusive. Here, we demonstrated that the multisite interactions between Mps1 and Ndc80 complex (Ndc80C) govern Mps1 kinetochore targeting. Importantly, we identified direct interaction between Mps1 tetratricopeptide repeat domain and Ndc80C. We further identified that Mps1 C-terminal fragment, which contains the protein kinase domain and C-tail, enhances Mps1 kinetochore localization. Mechanistically, Mps1 C-terminal fragment mediates its dimerization. Perturbation of C-tail attenuates the kinetochore targeting and activity of Mps1, leading to aberrant mitosis due to compromised SAC function. Taken together, our study highlights the importance of Mps1 dimerization and multisite interactions with Ndc80C in enabling responsive SAC signaling.


2019 ◽  
Author(s):  
Robert Wimbish ◽  
Keith F. DeLuca ◽  
Jeanne E. Mick ◽  
Jack Himes ◽  
Ignacio J. Sánchez ◽  
...  

AbstractThe conserved kinetochore-associated NDC80 complex (comprised of Hec1/Ndc80, Nuf2, Spc24, and Spc25) has well-documented roles in mitosis including (1) connecting mitotic chromosomes to spindle microtubules to establish force-transducing kinetochore-microtubule attachments, and (2) regulating the binding strength between kinetochores and microtubules such that correct attachments are stabilized and erroneous attachments are released. Although the NDC80 complex plays a central role in forming and regulating attachments to microtubules, additional factors support these processes as well, including the spindle and kinetochore-associated (Ska) complex. Multiple lines of evidence suggest that Ska complexes strengthen attachments by increasing the ability of NDC80 complexes to bind microtubules, especially to depolymerizing microtubule plus-ends, but how this is accomplished remains unclear. Using cell-based and in vitro assays, we demonstrate that the Hec1 tail domain is dispensable for Ska complex recruitment to kinetochores and for generation of kinetochore-microtubule attachments in human cells. We further demonstrate that Hec1 tail phosphorylation regulates kinetochore-microtubule attachment stability independently of the Ska complex. Finally, we map the location of the Ska complex in cells to a region near the coiled-coil domain of the NDC80 complex, and demonstrate that this region is required for Ska complex recruitment to the NDC80 complex-microtubule interface.


2019 ◽  
Author(s):  
Mohammad Zeeshan ◽  
Rajan Pandey ◽  
David J.P. Ferguson ◽  
Eelco C. Tromer ◽  
Robert Markus ◽  
...  

AbstractEukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. The genus Plasmodium, the causative agent of malaria, displays remarkable aspects of nuclear division throughout its lifecycle to meet some peculiar and unique challenges of DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore as an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.Summary StatementThe dynamic localization of kinetochore marker NDC80 protein complex during proliferative stages of the malaria parasite life cycle reveals unique modes of chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document