point vortex equilibria
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Vikas S. Krishnamurthy ◽  
Miles H. Wheeler ◽  
Darren G. Crowdy ◽  
Adrian Constantin

A new transformation between stationary point vortex equilibria in the unbounded plane is presented. Given a point vortex equilibrium involving only vortices with negative circulation normalized to −1 and vortices with positive circulations that are either integers or half-integers, the transformation produces a new equilibrium with a free complex parameter that appears as an integration constant. When iterated the transformation can produce infinite hierarchies of equilibria, or finite sequences that terminate after a finite number of iterations, each iteration generating equilibria with increasing numbers of point vortices and free parameters. In particular, starting from an isolated point vortex as a seed equilibrium, we recover two known infinite hierarchies of equilibria corresponding to the Adler–Moser polynomials and a class of polynomials found, using very different methods, by Loutsenko (Loutsenko 2004 J. Phys. A: Math. Gen. 37 , 1309–1321 (doi:10.1088/0305-4470/37/4/017)). For the latter polynomials, the existence of such a transformation appears to be new. The new transformation, therefore, unifies a wide range of disparate results in the literature on point vortex equilibria.


2019 ◽  
Vol 874 ◽  
Author(s):  
Vikas S. Krishnamurthy ◽  
Miles H. Wheeler ◽  
Darren G. Crowdy ◽  
Adrian Constantin

A new family of exact solutions to the two-dimensional steady incompressible Euler equation is presented. The solutions provide a class of hybrid equilibria comprising two point vortices of unit circulation – a point vortex pair – embedded in a smooth sea of non-zero vorticity of ‘Stuart-type’ so that the vorticity $\unicode[STIX]{x1D714}$ and the stream function $\unicode[STIX]{x1D713}$ are related by $\unicode[STIX]{x1D714}=a\text{e}^{b\unicode[STIX]{x1D713}}-\unicode[STIX]{x1D6FF}(\boldsymbol{x}-\boldsymbol{x}_{0})-\unicode[STIX]{x1D6FF}(\boldsymbol{x}+\boldsymbol{x}_{0})$, where $a$ and $b$ are constants. We also examine limits of these new Stuart-embedded point vortex equilibria where the Stuart-type vorticity becomes localized into additional point vortices. One such limit results in a two-real-parameter family of smoothly deformable point vortex equilibria in an otherwise irrotational flow. The new class of hybrid equilibria can be viewed as continuously interpolating between the limiting pure point vortex equilibria. At the same time the new solutions continuously extrapolate a similar class of hybrid equilibria identified by Crowdy (Phys. Fluids, vol. 15, 2003, pp. 3710–3717).


2017 ◽  
Vol 827 ◽  
pp. 121-154 ◽  
Author(s):  
R. Nelson ◽  
B. Protas ◽  
T. Sakajo

This paper concerns feedback stabilization of point-vortex equilibria above an inclined thin plate and a three-plate configuration known as the Kasper wing in the presence of an oncoming uniform flow. The flow is assumed to be potential and is modelled by the two-dimensional incompressible Euler equations. Actuation has the form of blowing and suction localized on the main plate and is represented in terms of a sink–source singularity, whereas measurement of pressure across the plate serves as system output. We focus on point-vortex equilibria forming a one-parameter family with locus approaching the trailing edge of the main plate and show that these equilibria are either unstable or neutrally stable. Using methods of linear control theory we find that the system dynamics linearized around these equilibria is both controllable and observable for almost all actuator and sensor locations. The design of the feedback control is based on the linear–quadratic–Gaussian (LQG) compensator. Computational results demonstrate the effectiveness of this control and the key finding of this study is that Kasper wing configurations are in general not only more controllable than their single-plate counterparts, but also exhibit larger basins of attraction under LQG feedback control. The feedback control is then applied to systems with additional perturbations added to the flow in the form of random fluctuations of the angle of attack and a vorticity shedding mechanism. Another important observation is that, in the presence of these additional perturbations, the control remains robust, provided the system does not deviate too far from its original state. Furthermore, except in a few isolated cases, introducing a vorticity-shedding mechanism enhanced the effectiveness of the control. Physical interpretation is provided for the results of the controllability and observability analysis as well as the response of the feedback control to different perturbations.


Author(s):  
Takashi Sakajo ◽  
Yuuki Shimizu

Owing to non-constant curvature and a handle structure, it is not easy to imagine intuitively how flows with vortex structures evolve on a toroidal surface compared with those in a plane, on a sphere and a flat torus. In order to cultivate an insight into vortex interactions on this manifold, we derive the evolution equation for N -point vortices from Green's function associated with the Laplace–Beltrami operator there, and we then formulate it as a Hamiltonian dynamical system with the help of the symplectic geometry and the uniformization theorem. Based on this Hamiltonian formulation, we show that the 2-vortex problem is integrable. We also investigate the point vortex equilibria and the motion of two-point vortices with the strengths of the same magnitude as one of the fundamental vortex interactions. As a result, we find some characteristic interactions between point vortices on the torus. In particular, two identical point vortices can be locally repulsive under a certain circumstance.


2015 ◽  
Vol 67 (1) ◽  
pp. 29184 ◽  
Author(s):  
Annette Müller ◽  
Peter Névir ◽  
Lisa Schielicke ◽  
Mirjam Hirt ◽  
Joscha Pueltz ◽  
...  

2014 ◽  
Vol 19 (5) ◽  
pp. 523-532 ◽  
Author(s):  
Kevin A. O’Neil ◽  
Nicholas Cox-Steib

Author(s):  
Kevin A. O'Neil

Stationary configurations of identical point vortices on the sphere are investigated using a simple numerical scheme. Configurations in which the vortices are arrayed along curves on the sphere are exhibited, which approximate equilibrium configurations of vortex sheets on the sphere. Other configurations (found after starting from random initial conditions) exhibit net-like distributions of vorticity, dividing the sphere into many cells that contain no vorticity or diffuse vorticity and forming a stationary ‘vortex foam’ on the sphere. They may be viewed as intermediate-energy elements in the set of all identical point vortex equilibria on the sphere. In the continuum limit, these foam states may correspond to stationary states of multiple intersecting vortex sheets. Stationary configurations of point vortices are not found to have this character when vortices of opposite circulations are included.


Sign in / Sign up

Export Citation Format

Share Document