extragalactic radio source
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 648 ◽  
pp. A125
Author(s):  
C. Gattano ◽  
P. Charlot

Context. Geodetic very long baseline interferometry (VLBI) has been used to observe extragalactic radio sources for more than 40 yr. The absolute source positions derived from the VLBI measurements serve as a basis to define the International Celestial Reference Frame (ICRF). Despite being located at cosmological distances, an increasing number of these sources are found to show position instabilities, as revealed by the accumulation of VLBI data over the years. Aims. We investigate how to characterize the astrometric source position variations, as measured with geodetic VLBI data, in order to determine whether these variations occur along random or preferential directions. The sample of sources used for this purpose is made up of the 215 most observed ICRF sources. Methods. Based on the geodetic VLBI data set, we derived source coordinate time series to map the apparent trajectory drawn by the successively measured positions of each source in the plane of the sky. We then converted the coordinate time series into a set of vectors and used the direction of these vectors to calculate a probability density function (PDF) for the direction of variation of the source position. For each source, a model that matches the PDF and that comprises the smallest number of Gaussian components possible was further adjusted. The resulting components then identify the preferred directions of variation for the source position. Results. We found that more than one-half of the sources (56%) in our sample may be characterized by at least one preferred direction. Among these, about three-quarters are characterized by a unique direction, while the remaining sources show multiple preferred directions. The analysis of the distribution of these directions reveals an excess along the declination axis that is attributed to a VLBI network effect. Whether single or multiple, the identified preferred directions are likely due to source-intrinsic physical phenomena.


2020 ◽  
Vol 500 (1) ◽  
pp. 211-214
Author(s):  
D A Green ◽  
N Madhusudhan

ABSTRACT We present radio observations made towards the exoplanets Qatar-1b and WASP-80b near 150 MHz with the Giant Meterwave Radio Telescope (GMRT). These targets are relatively nearby irradiated giant exoplanets, a hot Jupiter and a hot Saturn, with sizes comparable to Jupiter but different masses and lower densities. Both the targets are expected to host extended H/He envelopes like Jupiter, with comparable or larger magnetic moments. No radio emission was detected from these exoplanets, with 3σ limits of 5.9 and 5.2 mJy for Qatar-1b and WASP-80b, respectively, from these targeted observations. These are considerably deeper limits than those available for exoplanets from wide-field surveys at similar frequencies. We also present archival Very Large Array (VLA) observations of a previously reported radio source close to 61 Vir (which has three exoplanets). The VLA observations resolve the source, which we identify as an extragalactic radio source, i.e. a chance association with 61 Vir. Additionally, we cross-match a recent exoplanet catalogue with the TIFR GMRT Sky Survey ADR1 radio catalogue, but do not find any convincing associations.


2020 ◽  
Vol 492 (2) ◽  
pp. 2236-2240
Author(s):  
Arnab Chakraborty ◽  
Nirupam Roy ◽  
Y Wang ◽  
Abhirup Datta ◽  
H Beuther ◽  
...  

ABSTRACT The continuum emission from 1 to 2 GHz of The H i/OH/Recombination line survey of the inner Milky Way (THOR) at ≲18 arcsec resolution covers ∼132 deg2 of the Galactic plane and detects 10 387 sources. Similarly, the first data release of the Global View of Star Formation in the Milky Way (GLOSTAR) survey covers ∼16 deg2 of the Galactic plane from 4 to 8 GHz at 18 arcsec resolution and detects 1575 sources. However, a large fraction of the unresolved discrete sources detected in these radio continuum surveys of the Galactic plane remain unclassified. Here, we study the Euclidean-normalized differential source counts of unclassified and unresolved sources detected in these surveys and compare them with simulated extragalactic radio source populations and previously established source counts. We find that the differential source counts for THOR and GLOSTAR surveys are in excellent agreement with both simulation and previous observations. We also estimate the angular two-point correlation function of unclassified and unresolved sources detected in THOR survey. We find a higher clustering amplitude in comparison with the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey up to the angular separation of 5°. The decrease in angular correlation with increasing flux cut and the excellent agreement of clustering pattern of sources above 1 mJy with high-z samples (z > 0.5) of the FIRST survey indicates that these sources might be high-z extragalactic compact objects. The similar pattern of one-point and two-point statistics of unclassified and compact sources with extragalactic surveys and simulations confirms the extragalactic origin of these sources.


2018 ◽  
Vol 618 ◽  
pp. A80 ◽  
Author(s):  
C. Gattano ◽  
S. B. Lambert ◽  
K. Le Bail

Aims. We investigate the composition of the noise in coordinate time series of several hundreds of extragalactic radio sources monitored by the geodetic VLBI program since 1979. The noise type is identified at all available timescales longer than one year, following the observational history of the source. Methods. We computed the Allan standard deviation of coordinate time series and developed a Monte Carlo test to evaluate the influence of the irregular sampling and error on data onto the noise type identification. We classified the radio sources into three categories depending on their type of noise and taking into account the dominating noise at different timescales: from the category AV0, which contains sources with a stable behavior at all timescales, to the category AV2, which contains sources whose coordinates are dominated by random walks at the longest timescales. Results. We found that almost no source exhibited “idealized” white noise. Only 5% of the 647 sources we studied belong to the category AV0 (stable sources). Moreover, we found that this class contains sources with relatively short observational histories, suggesting that after some years, a source whose astrometric position has shown a stable behavior is likely to become unstable. This questions the existence of the stable source paradigm and adds complementary information in the crucial task of selecting sources on which to base the axes of the celestial reference frame.


2016 ◽  
Vol 25 (2) ◽  
Author(s):  
Ganna Donskykh

AbstractFlux density variations of the extragalactic radio source OJ 287 are studied by applying the wavelet and the singular spectrum methods to the long-term monitoring data at 14.5, 8.0 and 4.8 GHz acquired at the University of Michigan Radio Astronomy Observatory during 40 years. This monitoring significantly supplements the episodic VLBI data. The wavelet analysis at all three frequencies revealed the presence of quasiperiods within the intervals 6.0–7.4 and 1.2–1.8 years. The singular spectrum analysis revealed the presence of quasiperiods within the intervals 6–10 and 1.6–4.0 years. For each quasiperiod the time interval of its existence was determined.


2008 ◽  
Vol 385 (3) ◽  
pp. 1656-1672 ◽  
Author(s):  
Elaine M. Sadler ◽  
Roberto Ricci ◽  
Ronald D. Ekers ◽  
Robert J. Sault ◽  
Carole A. Jackson ◽  
...  

2002 ◽  
Vol 19 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Nectaria A. B. Gizani ◽  
M. A. Garrett ◽  
J. P. Leahy

AbstractWe present the kpc-scale behaviour of the powerful extragalactic radio source Hercules A and the behaviour of the intracluster gas in which the radio source is situated. We have found that Hercules A exhibits a strong Laing-Garrington effect. The X-ray observations have revealed an extended X-ray emission elongated along the radio galaxy axis. The estimated temperature of the cluster is kT=2.45 keV and the central electron density is n○≃7.8×10−3 cm−3 which reveals a hot, dense environment in which Hercules A is situated. From the combined study of the radio and X-ray data we have estimated a central value of 3 ≲ B○(μG)≲9.We also present the most recent results from the analysis of the radio data on the pc-scale structure of the radio galaxy, observed at 18 cm by the EVN–MERLIN array. A faint but compact radio source, coincident with the optical centre of Hercules A, was detected by the EVN at 18 mas resolution. The total flux density of the EVN core is 14.6 mJy. Its angular size is 18×7 mas with a position angle of ≃139°. There is also evidence for extended emission in the NW–SE direction, most probably from the eastern pc-scale jet. If this is true then there is a misalignment between the direction of the pc-eastern and the aligned kpc-scale jets of ≃35°.


Sign in / Sign up

Export Citation Format

Share Document