laser cleaning
Recently Published Documents


TOTAL DOCUMENTS

824
(FIVE YEARS 146)

H-INDEX

33
(FIVE YEARS 5)

Author(s):  
Ч. Циао

In order to solve the problem of cleaning small and micro pipelines, the control system of the cleaning robot for small and micro pipelines is designed using single-chip technology. Draw the circuit design flow chart, use PROTEUS software to design the display and control circuit of the DC adjustable regulated power supply, stepping motor. Write and debug the program that controls the start and stop of the motor, accelerate and decelerate, and rotate forward and reverse in keil4; import the program into the single-chip microcomputer, and use the PROTEUS software for simulation and simulation. The experimental results show that the designed control system can realize the two actions of the pipeline robot going straight in the pipeline and the cleaning head rotating.


2021 ◽  
Vol 11 (24) ◽  
pp. 11832
Author(s):  
Ji-Eon Kim ◽  
Pyung-Su Kim ◽  
Jong-Myoung Lee ◽  
Han-Seop Choe ◽  
Jong-Do Kim

While producing gas fuel supply pipes for duel fuel (DF) engines, a welding process is essential. Accordingly, specimen management before and after welding is crucial to obtain highly reliable weldments. In this study, we developed an environmentally friendly laser cleaning technology to address a toxic work environment and environmental pollution problems caused by chemical cleaning technology utilized in post-welding treatment of gas fuel supply for DF engines. An experiment was conducted by implementing surface laser cleaning of the butt and fillet weldment specimens according to process parameters. Conditions of process parameters were identified for facilitating laser cleaning and used in prototype production. The prototypes were processed through laser and chemical cleaning, and the quality of the end products was compared. The results indicated that the proposed method satisfactorily cleans the prototype surface without generating a toxic work environment and environmental pollution problems. Moreover, the roughness of approximately 5 μm was achieved on the laser cleaned surface. This is considered to be able to increase the adhesion of the paint compared to the smooth chemical cleaned surface during the painting for anticorrosion of the product.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1510
Author(s):  
Ji-Eon Kim ◽  
Jong-Myoung Lee ◽  
Jeong-Hun Hyun ◽  
Je-Han Jeong ◽  
Jong-Do Kim

Shipyards are very interested in improving their working environment and resolving environmental pollution issues by replacing mechanical cleaning technologies used before and after painting processes with laser cleaning technology. Because epoxy paint is thickly coated, with a thickness of 200 μm or greater, it is difficult to remove using both laser cleaning and mechanical cleaning technologies. Therefore, this study tried to obtain effective cleaning results by controlling the process parameters when removing the thick epoxy coating using a Q-switching fiber laser cleaning system with an average power of 100 W developed by our research team. The pulse duration time of the laser is 150 ns. Additionally, in order to determine whether the cleaning was sufficient, the difference in laser-induced plume/plasma was compared. By controlling the beam scanning patterns, line overlap rate, and pulse overlap rate, it was possible to obtain effective cleaning results without introducing removal deviation. In addition, the NOP increased when the laser beam overlap rate increased. This increased the amount of heat input to the material and reduced the number of scans required to remove the epoxy paint. As a result of the plume/plasma analysis, less plume/plasma was generated as the paint was removed if the epoxy paint remained on the surface. On the other hand, when all of the paint was removed, a higher brightness of plume/plasma generated by evaporation of the bare metal was observed.


Sign in / Sign up

Export Citation Format

Share Document