microend milling
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Brock A. Mascardelli ◽  
Simon S. Park ◽  
Theodor Freiheit

Microend milling offers the ability to machine microparts of complex geometry relatively quickly when compared with photolithographic techniques. The key to good surface quality is the minimization of tool chatter. This requires an understanding of the milling tool and the milling structure system dynamics. However, impact hammer testing cannot be applied directly to the prediction of tool tip dynamics because microend mills are fragile, with tip diameters as small as 10μm. This paper investigates the application of the receptance coupling technique to mathematically couple the spindle/micromachine and arbitrary microtools with different geometries. The frequency response functions (FRFs) of the spindle/micromachine tool are measured experimentally through impact hammer testing, utilizing laser displacement and capacitance sensors. The dynamics of an arbitrary tool substructure are determined through modal finite element analyses. Joint rotational dynamics are indirectly determined through experimentally measuring the FRFs of gauge tools. From the FRFs, chatter conditions are predicted and verified through micromilling experiments.


2006 ◽  
Vol 128 (4) ◽  
pp. 901-912 ◽  
Author(s):  
Martin B. G. Jun ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

In Part II of this paper, experimental and analytical methods have been developed to estimate the values of the process faults defined in Part I of this paper. The additional faults introduced by the microend mill design are shown to have a significant influence on the total net runout of the microend mill. The dynamic model has been validated through microend milling experiments. Using the dynamic model, the effects of minimum chip thickness and elastic recovery on microend milling stability have been studied over a range of feed rates for which the cutting mechanisms vary from ploughing-dominated to shearing-dominated. The minimum chip thickness effect is found to cause feed rate dependent instability at low feed rates, and the range of unstable feed rates depends on the axial depth of cut. The effects of process faults on microend mill vibrations have also been studied and the influence of the unbalance from the faults is found to be significant as spindle speed is increased. The stability characteristics due to the regenerative effect have been studied. The results show that the stability lobes from the second mode of the microend mill, which are generally neglected in macroscale end milling, affect the microend mill stability significantly.


2006 ◽  
Vol 128 (4) ◽  
pp. 893-900 ◽  
Author(s):  
Martin B. G. Jun ◽  
Xinyu Liu ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

In microend milling, due to the comparable size of the edge radius to chip thickness, chip formation mechanisms are different. Also, the design of microend mills with features of a large shank, taper, and reduced diameter at the cutting edges introduces additional dynamics and faults or errors at the cutting edges. A dynamic microend milling cutting force and vibration model has been developed to investigate the microend milling dynamics caused by the unique mechanisms of chip formation as well as the unique microend mill design and its associated fault system. The chip thickness model has been developed considering the elastic-plastic nature in the ploughing process. A slip-line field modeling approach is taken for a cutting force model development that accounts for variations in the effective rake angle and dead metal cap. The process fault parameters associated with microend mills have been defined and their effects on chip load have been derived. Finally, a dynamic model has been developed considering the effects of both the unique microend mill design and fault system and factors that become significant at high spindle speeds including rotary inertia and gyroscopic moments.


Sign in / Sign up

Export Citation Format

Share Document