monthly precipitation
Recently Published Documents


TOTAL DOCUMENTS

964
(FIVE YEARS 391)

H-INDEX

60
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Xianqi Zhang ◽  
Kai Wang ◽  
Tao Wang

Abstract Scientific prediction of precipitation changes has important guiding value and significance for revealing regional spatial and temporal patterns of precipitation changes, flood climate prediction, etc. Based on the fact that CEEMD can effectively overcome the interference of modal aliasing and white noise, fine composite multi-scale entropy can reorganize the same FCMSE value to reduce the modal component and improve the computational efficiency, and Stacking ensemble learning can effectively and conveniently improve the fitting effect of machine learning, a rainfall prediction method based on CEEMD-fine composite multi-scale entropy and Stacking ensemble learning is constructed, and it is applied to the prediction of monthly precipitation in the Xixia. The results show that, under the same conditions, the CEEMD-RCMSE-Stacking model reduces the root mean square error by 83.48% and 62.08%, and the mean absolute error by 83.25% and 61.84%, respectively, compared with the single Stacking model and CEEMD-LSTM, while the goodness-of-fit coefficients improve by 15.94% and 2.34%, respectively, which means that the CEEMD-RCMSE-Stacking model has higher prediction performance. The CEEMD-RCMSE-Stacking model has higher prediction performance.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Robert Kalbarczyk ◽  
Eliza Kalbarczyk

Deficient precipitation (dPr) in the growing season, especially in critical periods, affects plant condition and determines the quality and quantity of obtained yields. Knowledge about the variability and distribution of dPr is essential to mitigate its effect on agricultural soils and on crop and livestock production. The goal of the work is to determine the spatial and temporal distribution of spring precipitation deficiency and also to indicate the zones of risk and variability of its occurrence in Poland. It was assumed that dPr occurred when total monthly precipitation in a given year accounted for ≤75% of the total multi-year mean (1951–2018). In the spring season, the multi-year mean of the area covered by deficient precipitation (ACDP) amounted to 33% and fluctuated between approximately 31% in May and approximately 35% in March. The study distinguished four zones in Poland that vary in terms of the risk and variability of spring precipitation deficiency. The obtained results may be used, for example, to assess the needs for irrigation in the changing climate conditions, to model the growing season and yields of cultivated plants, and to select adaptation measures for agriculture in response to climate change.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Yuan Liu ◽  
Dongchun Yan ◽  
Anbang Wen ◽  
Zhonglin Shi ◽  
Taili Chen ◽  
...  

In this study, the temporal and spatial patterns of rainfall in the Longchuan River basin from 1977 to 2017 were analyzed, to assess the feature of precipitation. Based on the daily precipitation time series, the Lorenz curve, precipitation concentration index (PCI), precipitation concentration degree (PCD), and the precipitation concentration period (PCP) were used to evaluate the precipitation distribution characteristics. The PCI, PCD and PCP in five categories, defined by the fixed thresholds, were proposed to investigate the concentrations, and the average values indicated the higher concentrations in the higher intensities. The indices showed strong irregularity of daily and monthly precipitation distributions in this basin. The decrease in the PCD revealed an increase in the proportion of precipitation in the dry season. The rainy days of slight precipitation in the upper and lower basins with significant downward trends (−13.13 d/10 a, −7.78 d/10 a) led to longer dry spells and an increase in the risk of drought, even severe in the lower area. In the upper basin, the increase in rainfall erosivity was supported by the upward trend in the PCIw of heavy precipitation and the simple daily intensity index (SDII) of extreme precipitation. Moreover, the PCP of light precipitation, moderate precipitation, and heavy precipitation concentrated earlier at the end of July. The results of this study can provide beneficial reference information to water resource planning, reservoir operation, and agricultural production in the basin.


2022 ◽  
Vol 12 ◽  
Author(s):  
Justyna Ryniewicz ◽  
Katarzyna Roguz ◽  
Paweł Mirski ◽  
Emilia Brzosko ◽  
Mateusz Skłodowski ◽  
...  

A vast majority of angiosperms are pollinated by animals, and a decline in the number and diversity of insects often affects plant reproduction through pollen limitation. This phenomenon may be particularly severe in rare plant species, whose populations are shrinking. Here, we examined the variability in factors shaping reproductive success and pollen limitation in red-listed Polemonium caeruleum L. During a 5-year study in several populations of P. caeruleum (7–15, depending on year), we assessed the degree of pollen limitation based on differences in seed set between open-pollinated (control) and hand-pollinated flowers. We analysed the effects of flower visitors, population size, and meteorological data on plant reproductive success and pollen limitation. Our study showed that pollen limitation rarely affected P. caeruleum populations, and was present mainly in small populations. Pollen limitation index was negatively affected by the size of population, visitation frequency of all insects, and when considering the visitation frequency of individual groups, also by honeybee visits. Seed production in control treatment was positively influenced by the population size, average monthly precipitation in June and visits of hoverflies, while visits of honeybees, average monthly temperature in September, and average monthly precipitation in August influenced seed production negatively. As generalist plant P. caeruleum can be pollinated by diverse insect groups, however, in small populations their main visitors, the honeybees and bumblebees, may be less attracted, eventually leading to the disappearance of these populations. In pollination of P. caeruleum managed honeybees may play a dual role: while they are the most frequent and efficient flower visitors, their presence decreases seed set in open-pollinated flowers, which is most probably related to efficient pollen collection by these insects.


2022 ◽  
Vol 961 (1) ◽  
pp. 012040
Author(s):  
H H Mahdi ◽  
T A Musa ◽  
Z A A Al-Rammahi ◽  
E J Mahmood

Abstract Drought is a natural disaster associated with a shortage of water availability for specified region within a specific time period. The impacts of drought are significant and extend to damage many important life aspects such as environmental, economic, and social activities. The forecasting of the drought events is an essential element for planning this disaster, reducing its effectiveness and response. The three characteristic frequency, intensity, and time period are the key parts for forecasting and assessment of droughts. Here, two drought indices (The Reconnaissance Drought Index (RDI), standardized precipitation index (SPI)) were used for forecasting of the future drought within Al Najaf city, Iraq. Thirty years meteorological data (average monthly precipitation and temperature) were used for the period (2021–2050) downloaded from the site of the Centre for Environmental Data Analysis (CEDA) for five grid points to cover overall study area. The computation of these indices conducted at a 12-month time scale and included the calculation of potential evapotranspiration by Thorthwaite method. The temporal drought intensity as well as drought frequency configurations were calculated and analyzed for each drought index. The results showed that the general average drought level expected will mildly dry while the maximum drought level expected will extremely dry. The more severe seasons of drought were forecasted in the years 2038, 2034 and 2021, respectively. Also, the prevailing event will be a one year drought and the maximum drought interval occurred within the study period will four consecutive years, with a 3.33% exceedance probability.


Author(s):  
Mhamd S. Oyounalsoud ◽  
◽  
Arwa Najah ◽  
Abdullah G. Yilmaz ◽  
Mohamed Abdallah ◽  
...  

Drought is a natural disaster that significantly affects environmental and socio-economic conditions. It occurs when there is a period of below average precipitation in a region, and it results in water supply shortages affecting various sectors and life adversely. Droughts impact the ecosystems, crop production, and erode livelihoods. Monitoring drought is essential especially in the United Arab Emirates (UAE) due to the scarcity of rainfall for an extended period of time. In this study, drought is assessed in Sharjah UAE using monthly precipitation and average temperature data recorded for 35 years (1981-2015) at the Sharjah International Airport. The standardized precipitation Index (SPI), and the Reconnaissance Drought Index (RDI) are selected to predict future droughts in the region. SPI and RDI are fitted to the statistical distribution functions (gamma and lognormal) in an annual time scale and then, a trend analysis of index values is carried out using Mann-Kendal test. The correlation between SPI and RDI indices was found to be high where both showed high drought frequencies and a tendency to get drier over time, thus indicating the need of appropriate drought management and monitoring.


2021 ◽  
Vol 50 (4) ◽  
pp. 1133-1142
Author(s):  
Xinhui Xu ◽  
Xingyu Zhou ◽  
Zhenqiang Liu ◽  
Xiaoqing Zhao

Drought is the main natural disaster in Yunnan Province, China. In the present paper monthly precipitation observation data from Yunnan Province durign the period of 1966 - 2015 were used. From the data, the selected percentage of precipitation anomalies was used as drought index. By applying the ArcGIS inverse distance interpolation method and Mann Kendall non parametric trend test method the spatiotemporal variation characteristics of drought in Yunnan province were analyzed. Results show that the drought in Yunnan Province has a slightly upward trend. In spring and winter, there is a tendency to become wet but in summer and autumn, the tendency is shown by dry condition. It was observed that the studied area is prone to a severe drought in winter, and there will be more droughts in the east part, the northwest part, and the southwest part of Yunnan province when it is autumn. In other periods, severe doughts usually attack the middle part of Yunnan province, which can be proved by the characteristics of vegetation distribution. Bangladesh J. Bot. 50(4): 1133-1142, 2021 (December)


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Aline A. Freitas ◽  
Anita Drumond ◽  
Vanessa S. B. Carvalho ◽  
Michelle S. Reboita ◽  
Benedito C. Silva ◽  
...  

The São Francisco River Basin (SFRB) is one of the main watersheds in Brazil, standing out for generating energy and consumption, among other ecosystem services. Hence, it is important to identify hydrological drought events and the anomalous climate patterns associated with dry conditions. The Standard Precipitation Index (SPI) for 12 months was used to identify hydrological drought episodes over SFRB 1979 and 2020. For these episodes, the severity, duration, intensity, and peak were obtained, and SPI-1 was applied for the longest and most severe episode to identify months with wet and dry conditions within the rainy season (Nov–Mar). Anomalous atmospheric and oceanic patterns associated with this episode were also analyzed. The results revealed the longest and most severe hydrological drought episode over the basin occurred between 2012 and 2020. The episode over the Upper portion of the basin lasted 103 months. The results showed a deficit of monthly precipitation up to 250 mm in the southeast and northeast regions of the country during the anomalous dry months identified through SPI-1. The dry conditions observed during the rainy season of this episode were associated with an anomalous high-pressure system acting close to the coast of Southeast Brazil, hindering the formation of precipitating systems.


2021 ◽  
pp. 15-28
Author(s):  
Emre Topçu

Drought is a climatic event that threatens the environment and human life with an ambiguity of location and time. Recently, droughts can be analyzed for different periods with the help of different mathematical methods and developing technology. This study aims to perform a drought analysis in 126 designated study points of Turkey. The analyzed data includes monthly total precipitation values between March 2000 and February 2021, obtained from PERSIANN system (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). Monthly precipitation totals of these designated points were used as input parameters in the Drought Exceedance Probability Index (DEPI) which is a new drought analysis method. The analysis was conducted separately for the whole of Turkey from January to December. Moreover, the findings were compared with the Standardized Precipitation Index (SPI), a globally accepted and commonly used drought index, to measure the drought detection performance of DEPI. SPI was calculated for periods of 6, 12 and 24 months. Pearson correlation coefficients between drought values of SPI-6, SPI-12 and SPI-24 and DEPI results were calculated. The second part of the study includes possible trend of drought determined by the Mann-Kendall trend analysis method. Both DEPI and SPI results and trend analysis results were mapped and visualized with the help of ArcGIS package program. The highest correlation is between DEPI and SPI-12 with 0.75, while the lowest correlation is between DEPI and SPI-24 with a value of 0.62. SPI monthly drought maps indicated the wettest months were January and February, while the driest months were March and July. Besides the DEPI monthly drought maps, the wettest months were October and November, while the driest months were May and June. The Mann-Kendall trend maps showed a significant increase in drought for summer.


2021 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Salman Qureshi ◽  
Javad Koohpayma ◽  
Mohammad Karimi Firozjaei ◽  
Ata Abdollahi Kakroodi

The Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) are the most important and widely used data sources in several applications—e.g., forecasting drought and flood, and managing water resources—especially in the areas with sparse or no other robust sources. This study explored the accuracy and precision of satellite data products over a span of 18 years (2000–2017) using synoptic ground station data for three regions in Iran with different climates, namely (a) humid and high rainfall, (b) semi-arid, and (c) arid. The results show that the monthly precipitation products of GPM and TRMM overestimate the rainfall. On average, they overestimated the precipitation amount by 11% in humid, by 50% in semi-arid, and by 43% in arid climate conditions compared to the ground-based data. This study also evaluated the satellite data accuracy in drought and wet conditions based on the standardized precipitation index (SPI) and different seasons. The results showed that the accuracy of satellite data varies significantly under drought, wet, and normal conditions and different timescales, being lowest under drought conditions, especially in arid regions. The highest accuracy was obtained on the 12-month timescale and the lowest on the 3-month timescale. Although the accuracy of the data is dependent on the season, the seasonal effects depend on climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document