reference star
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Vatsal Panwar ◽  
Jean-Michel Desert ◽  
Kamen Todorov ◽  
Jacob Bean ◽  
Catherine Huitson ◽  
...  

<p>Ground-based spectrophotometric observations of transiting exoplanet atmospheres conventionally rely on correcting for instrumental and telluric systematics in the light curves by using reference stars that are simultaneously observed. However, this approach often leads to sub-optimal corrections due to multiple accounts on which the target and reference star spectra can be affected by systematics differently through the night, ultimately limiting the achievable precision and accuracy on the measurement of planetary atmospheric signatures. We introduce a new method based on Gaussian Processes regression to address this challenge by extracting the transmission or emission spectrum without relying explicitly on the reference stars. Our new method overcomes the necessity of using reference stars and opens up the doors to ground-based atmospheric observations of exoplanets orbiting bright host stars (e.g. those discovered by TESS) that intrinsically lack proper reference stars. We present results from the application of our method to a broad sample of exoplanets observed in the optical and near-infrared using Gemini/GMOS and Keck/MOSFIRE. We also discuss the challenges and possible solutions arising from stellar variability towards combining high precision ground-based low-resolution spectroscopy observations in complementarity with future infrared observations from HST and JWST.</p>


2021 ◽  
Vol 648 ◽  
pp. A26 ◽  
Author(s):  
Z. Wahhaj ◽  
J. Milli ◽  
C. Romero ◽  
L. Cieza ◽  
A. Zurlo ◽  
...  

Context. Direct imaging of extrasolar giant planets demands the highest possible contrasts (ΔH ≳ 10 mag) at the smallest angular separations (∼0.1″) from the star. We present an adaptive optics observing method, called star-hopping, recently offered as standard queue observing (service mode) for the SPHERE instrument at the VLT. The method uses reference difference imaging (RDI) but, unlike earlier RDI applications, images of a reference star for PSF subtraction are obtained within minutes of observing the target star. Aims. We aim to significantly gain in contrast beyond the conventional angular differencing imaging (ADI) method to search for a fifth planet at separations less than 10 au, interior to the four giant planets of the HR 8799 system. The most likely semimajor axes allowed for this hypothetical planet, which were estimated via dynamical simulations in earlier works, were 7.5 au and 9.7 au within a mass range of 1–8 MJup. Methods. We obtained 4.5 h of simultaneous low-resolution integral field spectroscopy (R ∼ 30, Y − H band with IFS) and dual-band imaging (K1 and K2 bands with IRDIS) of the HR 8799 system, interspersed with observations of a reference star. The reference star was observed for about one-third of the total time and generally needs to be of similar brightness (ΔR ≲ 1 mag) and separated on sky by ≲1–2°. The hops between stars were made every 6–10 min, with only 1 min gaps in on-sky integration per hop. Results. We did not detect the hypothetical fifth planet at the most plausible separations, 7.5 and 9.7 au, down to mass limits of 3.6 MJup and 2.8 MJup, respectively, but attained an unprecedented contrast limit of 11.2 magnitudes at 0.1″. We detected all four planets with high signal-to-noise ratios. The YJH spectra for planets c, d were detected with redder H-band spectral slopes than found in earlier studies. As noted in previous works, the planet spectra are matched very closely by some red field dwarfs. Finally, comparing the current locations of the planets to orbital solutions, we found that planets e and c are most consistent with coplanar and resonant orbits. We also demonstrated that with star-hopping RDI, the contrast improvement at 0.1″ separation can be up to 2 mag. Conclusions. Since ADI, meridian transit and the concomitant sky rotation are not needed, the time of observation can be chosen from within a window that is two to three times larger. In general, star-hopping can be used for stars fainter than R = 4 magnitudes, since for these a reference star of suitable brightness and separation is usually available.


2019 ◽  
Vol 625 ◽  
pp. A43 ◽  
Author(s):  
J. Desmars ◽  
E. Meza ◽  
B. Sicardy ◽  
M. Assafin ◽  
J. I. B. Camargo ◽  
...  

Context. From 1988 to 2016, several stellar occultations have been observed to characterise Pluto’s atmosphere and its evolution. From each stellar occultation, an accurate astrometric position of Pluto at the observation epoch is derived. These positions mainly depend on the position of the occulted star and the precision of the timing. Aims. We present 19 Pluto’s astrometric positions derived from occultations from 1988 to 2016. Using Gaia DR2 for the positions of the occulted stars, the accuracy of these positions is estimated at 2−10 mas, depending on the observation circumstances. From these astrometric positions, we derive an updated ephemeris of Pluto’s system barycentre using the NIMA code. Methods. The astrometric positions were derived by fitting the light curves of the occultation by a model of Pluto’s atmosphere. The fits provide the observed position of the centre for a reference star position. In most cases other publications provided the circumstances of the occultation such as the coordinates of the stations, timing, and impact parameter, i.e. the closest distance between the station and centre of the shadow. From these parameters, we used a procedure based on the Bessel method to derive an astrometric position. Results. We derive accurate Pluto’s astrometric positions from 1988 to 2016. These positions are used to refine the orbit of Pluto’system barycentre providing an ephemeris, accurate to the milliarcsecond level, over the period 2000−2020, allowing for better predictions for future stellar occultations.


2019 ◽  
Vol 157 (3) ◽  
pp. 118 ◽  
Author(s):  
Garreth Ruane ◽  
Henry Ngo ◽  
Dimitri Mawet ◽  
Olivier Absil ◽  
Élodie Choquet ◽  
...  

Author(s):  
Andrea Bosco ◽  
Andrea Bacchetta ◽  
Massimiliano Saponara ◽  
Gonzalo Saavedra Criado

2018 ◽  
Vol 44 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ansis ZARIŅŠ ◽  
Augusts RUBANS ◽  
Gunārs SILABRIEDIS

Since finalizing of design in 2016, the digital zenith camera of the University of Latvia was involved in a number of test observations as well as field observations at about 70 different sites. The paper presents analysis of observation results, estimation of instrument’s performance and accuracy. Random and systematic error sources are outlined. Impact of anomalous refraction on vertical deflection determination is discussed. Results of adaptation of GAIA reference star catalog for astrometric data reduction are reported.


2018 ◽  
Vol 610 ◽  
pp. A2 ◽  
Author(s):  
N. J. Cooper ◽  
V. Lainey ◽  
L.-E. Meunier ◽  
C. D. Murray ◽  
Q.-F. Zhang ◽  
...  

Aims. Caviar is a software package designed for the astrometric measurement of natural satellite positions in images taken using the Imaging Science Subsystem (ISS) of the Cassini spacecraft. Aspects of the structure, functionality, and use of the software are described, and examples are provided. The integrity of the software is demonstrated by generating new measurements of the positions of selected major satellites of Saturn, 2013–2016, along with their observed minus computed (O−C) residuals relative to published ephemerides. Methods. Satellite positions were estimated by fitting a model to the imaged limbs of the target satellites. Corrections to the nominal spacecraft pointing were computed using background star positions based on the UCAC5 and Tycho2 star catalogues. UCAC5 is currently used in preference to Gaia-DR1 because of the availability of proper motion information in UCAC5. Results. The Caviar package is available for free download. A total of 256 new astrometric observations of the Saturnian moons Mimas (44), Tethys (58), Dione (55), Rhea (33), Iapetus (63), and Hyperion (3) have been made, in addition to opportunistic detections of Pandora (20), Enceladus (4), Janus (2), and Helene (5), giving an overall total of 287 new detections. Mean observed-minus-computed residuals for the main moons relative to the JPL SAT375 ephemeris were − 0.66 ± 1.30 pixels in the line direction and 0.05 ± 1.47 pixels in the sample direction. Mean residuals relative to the IMCCE NOE-6-2015-MAIN-coorb2 ephemeris were −0.34 ± 0.91 pixels in the line direction and 0.15 ± 1.65 pixels in the sample direction. The reduced astrometric data are provided in the form of satellite positions for each image. The reference star positions are included in order to allow reprocessing at some later date using improved star catalogues, such as later releases of Gaia, without the need to re-estimate the imaged star positions.


2017 ◽  
Vol 12 (S330) ◽  
pp. 96-97
Author(s):  
Vincent Robert ◽  
Christophe Le Poncin-Lafitte

AbstractAccurate positional measurements of planets and satellites are used to improve our knowledge of their orbits and dynamics, and to infer the accuracy of the planet and satellite ephemerides. With the arrival of the Gaia-DR1 reference star catalog and its complete release afterward, the methods for ground-based astrometry become outdated in terms of their formal accuracy compared to the catalog's which is used. Systematic and zonal errors of the reference stars are eliminated, and the astrometric process now dominates in the error budget.We present a set of algorithms for computing the apparent directions of planets, satellites and stars on any date to micro-arcsecond precision. The expressions are consistent with the ICRS reference system, and define the transformation between theoretical reference data, and ground-based astrometric observables.


Author(s):  
B. Bucciarelli ◽  
R. Drimmel ◽  
M. G. Lattanzi ◽  
R. L. Smart ◽  
A. Spagna ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document