system level model
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 18)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 1215 (1) ◽  
pp. 012010
Author(s):  
A.V. Styazhkina ◽  
A.A. Belogurov ◽  
Ya.V. Belyaev ◽  
A.T. Tulaev

Abstract Development of micromechanical inertial sensors have made it possible to use them in the navigation and motion control systems. This application area imposes strict requirements on sensors. One of the ways to meet the requirements and to improve the gyroscope characteristics is to apply a dual- or multi-mass architecture of a gyroscope sensing element. This paper presents the results of dual-mass micromechanical gyroscope with a measurement range of ±450°/s design. The complex design method, including simulation at the system level, model refinement based on the results of finite element modelling, and modelling of individual electronic blocks at the circuit level, is described.


Author(s):  
Daniel Tang ◽  
Mike Evans ◽  
Paul Briskham ◽  
Luca Susmel ◽  
Neil Sims

Self-pierce riveting (SPR) is a complex joining process where multiple layers of material are joined by creating a mechanical interlock via the simultaneous deformation of the inserted rivet and surrounding material. Due to the large number of variables which influence the resulting joint, finding the optimum process parameters has traditionally posed a challenge in the design of the process. Furthermore, there is a gap in knowledge regarding how changes made to the system may affect the produced joint. In this paper, a new system-level model of an inertia-based SPR system is proposed, consisting of a physics-based model of the riveting machine and an empirically-derived model of the joint. Model predictions are validated against extensive experimental data for multiple sets of input conditions, defined by the setting velocity, motor current limit and support frame type. The dynamics of the system and resulting head height of the joint are predicted to a high level of accuracy. Via a model-based case study, changes to the system are identified, which enable either the cycle time or energy consumption to be substantially reduced without compromising the overall quality of the produced joint. The predictive capabilities of the model may be leveraged to reduce the costs involved in the design and validation of SPR systems and processes.


2020 ◽  
Vol 15 (1) ◽  
pp. 220-238
Author(s):  
Emily Dodge

This article describes Boston Beyond’s effort to develop a network of out-of-school time program partner staff trained in implementing a program quality observation tool. Participant survey (n = 63) and interview (n = 4) feedback demonstrate that the network is meeting its goals of advancing participants’ professional development, positively impacting organizations, and creating a system-level model of peer-to-peer program quality improvement. Areas of improvement are identified for each goal. Questions of sustainability, planned network improvements, and considerations for others seeking to establish similar networks are discussed.


Sign in / Sign up

Export Citation Format

Share Document