spectral mixture analysis
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 27)

H-INDEX

49
(FIVE YEARS 4)

2021 ◽  
Vol 13 (13) ◽  
pp. 2474
Author(s):  
Wenliang Li

Impervious surfaces have been widely considered as the key indicator for evaluating urbanization and environmental quality. As one of the most widely applied methods, spectral mixture analysis (SMA) has been commonly used for mapping urban impervious surface fractions. When implementing SMA, the original multispectral remote-sensing reflectance images are served as the foundation and key to successful SMA. However, the limited spectral variances among different land covers from the original reflectance images make it challenging in information extraction and results in unsatisfactory mapping results. To address this issue, a new method has been proposed in this study to improve urban impervious surface mapping through integrating statistical methods and SMA. In particular, two traditional statistical methods, principal component analysis (PCA) and minimum noise fraction rotation (MNF) were applied to highlight the spectral variances among different land covers. Three endmember classes (impervious surface, soil, and vegetation) and corresponding spectra were identified and extracted from the vertices of the 2-D space plots generated by the first three components of each of the statistical analysis methods, PCA and MNF. A new dataset was generated by stacking the first three components of the PCA and MNF (in a total of six components), and a fully constrained linear SMA was implemented to map the fractional impervious surfaces. Results indicate that a promising performance has been achieved by the proposed new method with the systematic error (SE) of −3.45% and mean absolute error (MAE) of 11.52%. Comparative analysis results also show a much better performance achieved by the proposed statistical method-based SMA than the conventional SMA.


2021 ◽  
Vol 13 (5) ◽  
pp. 979
Author(s):  
Víctor Fernández-García ◽  
Elena Marcos ◽  
José Manuel Fernández-Guisuraga ◽  
Alfonso Fernández-Manso ◽  
Carmen Quintano ◽  
...  

Heterogeneous and patchy landscapes where vegetation and abiotic factors vary at small spatial scale (fine-grained landscapes) represent a challenge for habitat diversity mapping using remote sensing imagery. In this context, techniques of spectral mixture analysis may have an advantage over traditional methods of land cover classification because they allow to decompose the spectral signature of a mixed pixel into several endmembers and their respective abundances. In this work, we present the application of Multiple Endmember Spectral Mixture Analysis (MESMA) to quantify habitat diversity and assess the compositional turnover at different spatial scales in the fine-grained landscapes of the Cantabrian Mountains (northwestern Iberian Peninsula). A Landsat-8 OLI scene and high-resolution orthophotographs (25 cm) were used to build a region-specific spectral library of the main types of habitats in this region (arboreal vegetation; shrubby vegetation; herbaceous vegetation; rocks–soil and water bodies). We optimized the spectral library with the Iterative Endmember Selection (IES) method and we applied MESMA to unmix the Landsat scene into five fraction images representing the five defined habitats (root mean square error, RMSE ≤ 0.025 in 99.45% of the pixels). The fraction images were validated by linear regressions using 250 reference plots from the orthophotographs and then used to calculate habitat diversity at the pixel (α-diversity: 30 × 30 m), landscape (γ-diversity: 1 × 1 km) and regional (ε-diversity: 110 × 33 km) scales and the compositional turnover (β- and δ-diversity) according to Simpson’s diversity index. Richness and evenness were also computed. Results showed that fraction images were highly related to reference data (R2 ≥ 0.73 and RMSE ≤ 0.18). In general, our findings indicated that habitat diversity was highly dependent on the spatial scale, with values for the Simpson index ranging from 0.20 ± 0.22 for α-diversity to 0.60 ± 0.09 for γ-diversity and 0.72 ± 0.11 for ε-diversity. Accordingly, we found β-diversity to be higher than δ-diversity. This work contributes to advance in the estimation of ecological diversity in complex landscapes, showing the potential of MESMA to quantify habitat diversity in a comprehensive way using Landsat imagery.


2021 ◽  
Vol 13 (2) ◽  
pp. 166
Author(s):  
Xiaohui Sun ◽  
Wenjin Wu ◽  
Xinwu Li ◽  
Xiyan Xu ◽  
Jinfeng Li

In polar regions, vegetation is especially sensitive to climate dynamics and thus can be used as an indicator of the global and regional environmental change. However, in Antarctica, there is very little information on vegetation distribution and growth status. To fill this gap, we evaluated the ability of both linear and nonlinear spectral mixture analysis (SMA) models, including a group of newly developed modified Nascimento’s models for Antarctic vegetated areas (MNM-AVs), in estimating the abundance of major Antarctic vegetation types, i.e., mosses and lichens. The study was conducted using WorldView-2 satellite data and field measurements over the Fildes Peninsula and its surroundings, which are representative vegetated areas in Antarctica. In MNM-AVs, we introduced secondary scattering components for vegetation and its background to account for the sparsity of vegetation cover and reassigned their coefficients. The new models achieved improved performances, among which MNM-AV3 achieved the lowest error for mosses (lichens) abundance estimation with RMSE = 0.202 (0.213). Compared with MNM-AVs, the linear model performed particularly poor for lichens (RMSE = 0.322), which is in contrast to the case of mosses (RMSE = 0.212), demonstrating that spectral signals of lichens are more prone to mix with their backgrounds. Abundance maps of mosses and lichens, as well as a map of moss health status for the entire study area, were then obtained based on MNM-AV3 with around 80% overall accuracy. Moss areas account for 0.7695 km2 in Fildes and 0.3259 km2 in Ardley Island; unhealthy mosses amounted to 40% (49%) of the area in the summer of 2018 (2019), indicating considerable environmental stress.


2020 ◽  
Vol 3 (1) ◽  
pp. 63
Author(s):  
Lilik Norvi Purhartanto ◽  
Projo Danoedoro ◽  
Pramaditya Wicaksono

A forest plantation area of Melaleuca cajuputi at BDH Karangmojo, BKPH Yogyakarta are 2,325.20 ha. One of the efforts to keep its sustainability is to plan the target and realization of cajuputi leaf production considerwith forest condition. Advances in remote sensing technology can be an alternative in estimating the cajuputi leaf production on large areas with an efficient time and high accuracy and able to analyze the quality of cajuputi. This study aims to examine Sentinel-2A capabilities through a relationship model of some vegetation indices integrated with vegetative factors on the production to obtain estimates of leaf production, map and test the estimation model accuracy. The method used is to classify objects in pixels with Linear Spectral Mixture Analysis and build relationship between age, number of plants and vegetation index with cajuputi leaf production. The results showed that the unmixing method has 99,66% accuracy in classifying pixels into the fraction of cajuputi. MERIS Terrestrial Chlorophyll Index of unmixing cajuputi fraction simultaneously with age and number of plants has the highest correlation with value of r = 0,668 to the production and modeled in mapping the estimated cajuputi leaf production at the research location with Standard Error of Estimate is 0,183.


Sign in / Sign up

Export Citation Format

Share Document