spectral mixture
Recently Published Documents


TOTAL DOCUMENTS

486
(FIVE YEARS 69)

H-INDEX

56
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Daniel Sousa ◽  
Philip Gregory Brodrick ◽  
Kerry Cawse-Nicholson ◽  
Joshua B Fisher ◽  
Ryan Pavlick ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (19) ◽  
pp. 3840
Author(s):  
Rowan L. Converse ◽  
Christopher D. Lippitt ◽  
Caitlin L. Lippitt

Drought intensity and duration are expected to increase over the coming century in the semiarid western United States due to anthropogenic climate change. Historic data indicate that megadroughts in this region have resulted in widespread ecosystem transitions. Landscape-scale monitoring with remote sensing can help land managers to track these changes. However, special considerations are required: traditional vegetation indices such as NDVI often underestimate vegetation cover in semiarid systems due to short and multimodal green pulses, extremely variable rainfall, and high soil fractions. Multi-endmember spectral mixture analysis (MESMA) may be more suitable, as it accounts for both green and non-photosynthetic soil fractions. To determine the suitability of MESMA for assessing drought vegetation dynamics in the western US, we test multiple endmember selection and model parameters for optimizing the classification of fractional cover of green vegetation (GV), non-photosynthetic vegetation (NPV), and soil (S) in semiarid grass- and shrubland in central New Mexico. Field spectra of dominant vegetation species were collected at the Sevilleta National Wildlife Refuge over six field sessions from May–September 2019. Landsat Thematic Mapper imagery from 2009 (two years pre-drought), and Landsat Operational Land Imager imagery from 2014 (final year of drought), and 2019 (five years post-drought) was unmixed. The best fit model had high levels of agreement with reference plots for all three classes, with R2 values of 0.85 (NPV), 0.67 (GV), and 0.74 (S) respectively. Reductions in NPV and increases in GV and S were observed on the landscape after the drought event, that persisted five years after a return to normal rainfall. Results indicate that MESMA can be successfully applied for monitoring changes in relative vegetation fractions in semiarid grass and shrubland systems in New Mexico.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chelsea Ackroyd ◽  
S. McKenzie Skiles ◽  
Karl Rittger ◽  
Joachim Meyer

High Mountain Asia (HMA) has the largest expanse of snow outside of the polar regions and it plays a critical role in climate and hydrology. In situ monitoring is rare due to terrain complexity and inaccessibility, making remote sensing the most practical way to understand snow patterns in HMA despite relatively short periods of record. Here, trends in snow cover duration were assessed using MODIS between 2002 and 2017 across the headwaters of the region’s primary river basins (Amu Darya, Brahmaputra, Ganges, Indus, and Syr Darya). Data limitations, associated with traditional binary mapping and data gaps due to clouds, were addressed with a daily, spatially and temporally complete, snow cover product that maps the fraction of snow in each pixel using spectral mixture analysis. Trends in fractional snow cover duration (fSCD) were calculated at the annual and monthly scale, and across 1,000 m elevation bands, and compared to trends in binary snow cover duration (SCD). Snow cover is present, on average, for 102 days across all basin headwaters, with the longest duration in western basins and shortest in eastern basins. Broadly, snow cover is in decline, which is most pronounced in elevation bands where snow is most likely to be present and most needed to sustain glaciers. Some of the strongest negative trends in fSCD were in the Syr Darya, which has 13 fewer days between 4,000–5,000 m, and Brahmaputra, which has 31 fewer days between 5,000–6,000 m. The only increasing tendency was found in the Indus between 2,000 and 5,000 m. There were differences between fSCD and SCD trends, due to SCD overestimating snow cover area relative to fSCD.


2021 ◽  
Author(s):  
J. Paul Robinson

Many processors are available for separating particles and/or cells, but few can match the capacity of flow cytometry – in particular the sorting component. Several aspects unique to cell sorting give it such power. First, particles can be separated based on size, complexity, fluorescence, or any combination of these parameters. Second, it is entirely possible to separate particles under sterile conditions, making this technology very advantageous for selecting cells for culture. Third, when this sterile environment is combined with a highly controlled safety system, it is possible to safely sort and separate highly pathogenic organisms or even cells containing such pathogens. The very latest instruments available add even more power by introducing the ability to sort cells based on spectral unmixing. This last option requires incredible computer power and very-high-speed processing, since the sort decision is based on computational algorithms derived from the spectral mixture being analyzed.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 791
Author(s):  
Jinyu Zang ◽  
Ting Zhang ◽  
Longqian Chen ◽  
Long Li ◽  
Weiqiang Liu ◽  
...  

Population data are key indicators of policymaking, public health, and land use in urban and ecological systems; however, traditional censuses are time-consuming, expensive, and laborious. This study proposes a method of modelling population density estimations based on remote sensing data in Hefei. Four models with impervious surface (IS), night light (NTL), and point of interest (POI) data as independent variables are constructed at the township scale, and the optimal model was applied to pixels to obtain a finer population density distribution. The results show that: (1) impervious surface (IS) data can be effectively extracted by the linear spectral mixture analysis (LSMA) method; (2) there is a high potential of the multi-variable model to estimate the population density, with an adjusted R2 of 0.832, and mean absolute error (MAE) of 0.420 from 10-fold cross validation recorded; (3) downscaling the predicted population density from the township scale to pixels using the multi-variable stepwise regression model achieves a more refined population density distribution. This study provides a promising method for the rapid and effective prediction of population data in interval years, and data support for urban planning and population management.


2021 ◽  
Author(s):  
Kai Chen ◽  
Twan van Laarhoven ◽  
Elena Marchiori

AbstractLong-term forecasting involves predicting a horizon that is far ahead of the last observation. It is a problem of high practical relevance, for instance for companies in order to decide upon expensive long-term investments. Despite the recent progress and success of Gaussian processes (GPs) based on spectral mixture kernels, long-term forecasting remains a challenging problem for these kernels because they decay exponentially at large horizons. This is mainly due to their use of a mixture of Gaussians to model spectral densities. Characteristics of the signal important for long-term forecasting can be unravelled by investigating the distribution of the Fourier coefficients of (the training part of) the signal, which is non-smooth, heavy-tailed, sparse, and skewed. The heavy tail and skewness characteristics of such distributions in the spectral domain allow to capture long-range covariance of the signal in the time domain. Motivated by these observations, we propose to model spectral densities using a skewed Laplace spectral mixture (SLSM) due to the skewness of its peaks, sparsity, non-smoothness, and heavy tail characteristics. By applying the inverse Fourier Transform to this spectral density we obtain a new GP kernel for long-term forecasting. In addition, we adapt the lottery ticket method, originally developed to prune weights of a neural network, to GPs in order to automatically select the number of kernel components. Results of extensive experiments, including a multivariate time series, show the beneficial effect of the proposed SLSM kernel for long-term extrapolation and robustness to the choice of the number of mixture components.


Author(s):  
F. Kizel ◽  
Y. Vidro

Abstract. Hyperspectral imaging is crucial for a variety of land-cover mapping and analyzing tasks. The available large number of reflected light measurements along a wide range of wavelengths allows for distinguishing between different materials under various conditions. Though, several effects bear an undesired variability within hyperspectral images and increase the complexity of interpreting such data. Two of the most significant effects in this regard are the BRDF and the spectral mixture. Due to the first, the acquisitions geometrical and viewing conditions influences the measured spectral signature of a surface to a large extent. On the other hand, because of the typical low spatial resolution of remotely sensed images, each pixel can contain more than one material. Despite much research addressing either the BRDF effect and ways to correct it or the spectral unmixing, too few works considered these two effects' mutual influence. In this work, we study the BRDF of mixed pixels and present preliminary insights of testing a strategy to correct its undesired impact on the data by incorporating the EMs fractions within an unmixing-based semi-empirical correction model. Experimental results using real laboratory data acquired under controlled conditions clearly show the significant improvement of the corrected reflectance results through the proposed model.


Sign in / Sign up

Export Citation Format

Share Document