adjoint transport
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Zachary W LaMere ◽  
Darren E Holland ◽  
Whitman T Dailey ◽  
John W McClory

Neutrons from an atmospheric nuclear explosion can be detected by sensors in orbit. Current tools for characterizing the neutron energy spectrum assume a known source and use forward transport to recreate the detector response. In realistic scenarios the true source is unknown, making this an inefficient, iterative approach. In contrast, the adjoint approach directly solves for the source spectrum, enabling source reconstruction. The time–energy fluence at the satellite and adjoint transport equation allow a Monte Carlo method to characterize the neutron source’s energy spectrum directly in a new model: the Space to High-Altitude Region Adjoint (SAHARA) model. A new adjoint source event estimator was developed in SAHARA to find feasible solutions to the neutron transport problem given the constraints of the adjoint environment. This work explores SAHARA’s development and performance for mono-energetic and continuous neutron energy sources. In general, the identified spectra were shifted towards energies approximately 5% lower than the true source spectra, but SAHARA was able to capture the correct spectral shapes. Continuous energy sources, including real-world sources Fat Man and Little Boy, resulted in identifiable spectra that could have been produced by the same distribution as the true sources as demonstrated by two-dimensional (2D) Kolmogorov–Smirnov tests.


2017 ◽  
Vol 10 (3) ◽  
pp. 1157-1174 ◽  
Author(s):  
Yosuke Niwa ◽  
Hirofumi Tomita ◽  
Masaki Satoh ◽  
Ryoichi Imasu ◽  
Yousuke Sawa ◽  
...  

Abstract. A four-dimensional variational (4D-Var) method is a popular algorithm for inverting atmospheric greenhouse gas (GHG) measurements. In order to meet the computationally intense 4D-Var iterative calculation, offline forward and adjoint transport models are developed based on the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). By introducing flexibility into the temporal resolution of the input meteorological data, the forward model developed in this study is not only computationally efficient, it is also found to nearly match the transport performance of the online model. In a transport simulation of atmospheric carbon dioxide (CO2), the data-thinning error (error resulting from reduction in the time resolution of the meteorological data used to drive the offline transport model) is minimized by employing high temporal resolution data of the vertical diffusion coefficient; with a low 6-hourly temporal resolution, significant concentration biases near the surface are introduced. The new adjoint model can be run in discrete or continuous adjoint mode for the advection process. The discrete adjoint is characterized by perfect adjoint relationship with the forward model that switches off the flux limiter, while the continuous adjoint is characterized by an imperfect but reasonable adjoint relationship with its corresponding forward model. In the latter case, both the forward and adjoint models use the flux limiter to ensure the monotonicity of tracer concentrations and sensitivities. Trajectory analysis for high CO2 concentration events are performed to test adjoint sensitivities. We also demonstrate the potential usefulness of our adjoint model for diagnosing tracer transport. Both the offline forward and adjoint models have computational efficiency about 10 times higher than the online model. A description of our new 4D-Var system that includes an optimization method, along with its application in an atmospheric CO2 inversion and the effects of using either the discrete or continuous adjoint method, is presented in an accompanying paper Niwa et al.(2016).


2017 ◽  
Vol 153 ◽  
pp. 06001
Author(s):  
Alex Malins ◽  
Masahiko Machida ◽  
Koji Niita

2016 ◽  
Author(s):  
Yosuke Niwa ◽  
Hirofumi Tomita ◽  
Masaki Satoh ◽  
Ryoichi Imasu ◽  
Yousuke Sawa ◽  
...  

Abstract. A 4-dimensional variational (4D-Var) method is a popular algorithm for inverting atmospheric greenhouse gas (GHG) measurements. In order to meet the computationally intense 4D-Var iterative calculation, off-line forward and adjoint transport models are developed based on the Nonhydorstatic ICosahedral Atmospheric Model (NICAM). By introducing flexibility into the temporal resolution of the input meteorological data, the forward model developed in this study is not only computationally efficient but is also found to nearly match the transport performance of the on-line model. In a transport simulation of atmospheric carbon dioxide (CO2), the data-thinning error (error resulting from reduction in the time resolution of the meteorological data used to drive the off-line transport model) is minimized by employing high temporal resolution data of the vertical diffusion coefficient; with a lower temporal resolution, significant concentration biases near the surface are introduced. The new adjoint model can be run in discrete or continuous adjoint mode for the advection process. The discrete adjoint is characterized by perfect adjoint relationship with the forward model that switches off the flux limiter, while the continuous adjoint is characterized by imperfect but reasonable adjoint relationship with its corresponding forward model. In the latter case, both the forward and adjoint models use the flux limiter to ensure the monotonicity of tracer concentrations and sensitivities. Trajectory analysis for high-CO2 concentration events are performed to test adjoint sensitivities; we also demonstrate the potential usefulness of our adjoint model for diagnosing tracer transport. Both the off-line forward and adjoint models have computational efficiency about ten times more than that of the on-line model. A description of our new 4D-Var system that includes an optimization method, along with its application in an atmospheric CO2 inversion and the effects of using either the discrete or continuous adjoint method, is presented in an accompanying paper (Niwa et al., 2016).


2014 ◽  
Vol 7 (5) ◽  
pp. 2485-2500 ◽  
Author(s):  
C. Wilson ◽  
M. P. Chipperfield ◽  
M. Gloor ◽  
F. Chevallier

Abstract. We present a new variational inverse transport model, named INVICAT (v1.0), which is based on the global chemical transport model TOMCAT, and a new corresponding adjoint transport model, ATOMCAT. The adjoint model is constructed through manually derived discrete adjoint algorithms, and includes subroutines governing advection, convection and boundary layer mixing, all of which are linear in the TOMCAT model. We present extensive testing of the adjoint and inverse models, and also thoroughly assess the accuracy of the TOMCAT forward model's representation of atmospheric transport through comparison with observations of the atmospheric trace gas SF6. The forward model is shown to perform well in comparison with these observations, capturing the latitudinal gradient and seasonal cycle of SF6 to within acceptable tolerances. The adjoint model is shown, through numerical identity tests and novel transport reciprocity tests, to be extremely accurate in comparison with the forward model, with no error shown at the level of accuracy possible with our machines. The potential for the variational system as a tool for inverse modelling is investigated through an idealised test using simulated observations, and the system demonstrates an ability to retrieve known fluxes from a perturbed state accurately. Using basic off-line chemistry schemes, the inverse model is ready and available to perform inversions of trace gases with relatively simple chemical interactions, including CH4, CO2 and CO.


2013 ◽  
Vol 6 (4) ◽  
pp. 7117-7159 ◽  
Author(s):  
C. Wilson ◽  
M. P. Chipperfield ◽  
M. Gloor ◽  
F. Chevallier

Abstract. We present a new variational inverse transport model, named INVICAT (v1.0), which is based upon the global chemical transport model TOMCAT, and a new corresponding adjoint transport model, ATOMCAT. The adjoint model is constructed through manually derived discrete adjoint algorithms, and includes subroutines governing advection, convection and boundary layer mixing. We present extensive testing of the adjoint and inverse models, and also thoroughly assess the accuracy of the TOMCAT forward model's representation of atmospheric transport through comparison with observations of the atmospheric trace gas SF6. The forward model is shown to perform well in comparison with these observations, capturing the latitudinal gradient and seasonal cycle of SF6 to within acceptable tolerances. The adjoint model is shown, through numerical identity tests and novel transport reciprocity tests, to be extremely accurate in comparison with the forward model, with no error shown at the level of accuracy possible with our machines. The potential for the variational system as a tool for inverse modelling is investigated through an idealised test using simulated observations, and the system demonstrates an ability to retrieve known fluxes from a perturbed state accurately. Using basic off-line chemistry schemes, the inverse model is ready and available to perform inversions of trace gases with relatively simple chemical interactions, including CH4, CO2 and CO.


Sign in / Sign up

Export Citation Format

Share Document