scholarly journals Novel Investigation of Multivariable Conformable Calculus for Modeling Scientific Phenomena

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mohammed K. A. Kaabar ◽  
Francisco Martínez ◽  
Inmaculada Martínez ◽  
Zailan Siri ◽  
Silvestre Paredes

New investigation on the conformable version (CoV) of multivariable calculus is proposed. The conformable derivative (CoD) of a real-valued function (RVF) of several variables (SVs) and all related properties are investigated. An extension to vector-valued functions (VVFs) of several real variables (SRVs) is studied in this work. The CoV of chain rule (CR) for functions of SVs is also introduced. At the end, the CoV of implicit function theorem (IFThm) for SVs is established. All results in this work can be potentially applied in studying various modeling scenarios in physical oceanography such as Stommel’s box model of thermohaline circulation and other related models where all our results can provide a new analysis and computational tool to investigate these models or their modified formulations.

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Andriy Ivanovych Bandura ◽  
Tetyana Mykhailivna Salo ◽  
Oleh Bohdanovych Skaskiv

The present paper is devoted to the properties of entire vector-valued functions of bounded L-index in join variables, where L:Cn→R+n is a positive continuous function. For vector-valued functions from this class we prove some propositions describing their local properties. In particular, these functions possess the property that maximum of norm for some partial derivative at a skeleton of polydisc does not exceed norm of the derivative at the center of polydisc multiplied by some constant. The converse proposition is also true if the described inequality is satisfied for derivative in each variable.


Filomat ◽  
2018 ◽  
Vol 32 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Nazlı Gözütok ◽  
Uğur Gözütok

Conformable fractional derivative is introduced by the authors Khalil et al. In this study we develop their concept and introduce multi-variable conformable derivative for a vector valued function with several variables


2017 ◽  
Vol 173 (2) ◽  
pp. 357-390 ◽  
Author(s):  
N. Dinh ◽  
M. A. Goberna ◽  
M. A. López ◽  
T. H. Mo

2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.


2014 ◽  
Vol 57 (1) ◽  
pp. 17-82 ◽  
Author(s):  
TUOMAS P. HYTÖNEN ◽  
ANTTI V. VÄHÄKANGAS

AbstractWe extend the local non-homogeneous Tb theorem of Nazarov, Treil and Volberg to the setting of singular integrals with operator-valued kernel that act on vector-valued functions. Here, ‘vector-valued’ means ‘taking values in a function lattice with the UMD (unconditional martingale differences) property’. A similar extension (but for general UMD spaces rather than UMD lattices) of Nazarov-Treil-Volberg's global non-homogeneous Tb theorem was achieved earlier by the first author, and it has found applications in the work of Mayboroda and Volberg on square-functions and rectifiability. Our local version requires several elaborations of the previous techniques, and raises new questions about the limits of the vector-valued theory.


1974 ◽  
Vol 26 (4) ◽  
pp. 841-853 ◽  
Author(s):  
Robert A. Fontenot

This paper is motivated by work in two fields, the theory of strict topologies and topological measure theory. In [1], R. C. Buck began the study of the strict topology for the algebra C*(S) of continuous, bounded real-valued functions on a locally compact Hausdorff space S and showed that the topological vector space C*(S) with the strict topology has many of the same topological vector space properties as C0(S), the sup norm algebra of continuous realvalued functions vanishing at infinity. Buck showed that as a class, the algebras C*(S) for S locally compact and C*(X), for X compact, were very much alike. Many papers on the strict topology for C*(S), where S is locally compact, followed Buck's; e.g., see [2; 3].


2005 ◽  
Vol 227 (2) ◽  
pp. 372-388 ◽  
Author(s):  
Miroslav Krbec ◽  
Hans-Jürgen Schmeisser

Sign in / Sign up

Export Citation Format

Share Document