actin comet tails
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 1)

H-INDEX

14
(FIVE YEARS 0)

2020 ◽  
Author(s):  
O’Neil Wiggan ◽  
Jennifer G. DeLuca ◽  
Timothy J. Stasevich ◽  
James R. Bamburg

AbstractNuclear envelope proteins influence cell cytoarchitecure by poorly understood mechanisms. Here we show that siRNA-mediated silencing of lamin A/C (LMNA) promotes contrasting stress fiber assembly and disassembly in individual cells and within cell populations. We show that LMNA deficient cells have elevated myosin-II bipolar filament accumulations, irregular formation of actin comet tails and podosome-like adhesions, increased steady state nuclear localization of the mechanosensitive transcription factors MKL1 and YAP, and induced expression of some MKL1/Serum Response Factor (SRF) regulated genes such as that encoding myosin-IIA (MYH9). Our studies utilizing live cell imaging and pharmacological inhibition of myosin-II, support a mechanism of deregulated myosin-II self-organizing activity at the nexus of divergent actin cytoskeletal aberrations resultant from LMNA loss. In light of our results, we propose a model of how the nucleus, via linkage to the cytoplasmic actomyosin network, may act to control myosin-II contractile behavior through both mechanical and transcriptional feedback mechanisms.


2018 ◽  
Vol 218 (1) ◽  
pp. 251-266 ◽  
Author(s):  
Xiaohua Hu ◽  
R. Dyche Mullins

During autophagy, actin filament networks move and remodel cellular membranes to form autophagosomes that enclose and metabolize cytoplasmic contents. Two actin regulators, WHAMM and JMY, participate in autophagosome formation, but the signals linking autophagy to actin assembly are poorly understood. We show that, in nonstarved cells, cytoplasmic JMY colocalizes with STRAP, a regulator of JMY’s nuclear functions, on nonmotile vesicles with no associated actin networks. Upon starvation, JMY shifts to motile, LC3-containing membranes that move on actin comet tails. LC3 enhances JMY’s de novo actin nucleation activity via a cryptic actin-binding sequence near JMY’s N terminus, and STRAP inhibits JMY’s ability to nucleate actin and activate the Arp2/3 complex. Cytoplasmic STRAP negatively regulates autophagy. Finally, we use purified proteins to reconstitute LC3- and JMY-dependent actin network formation on membranes and inhibition of network formation by STRAP. We conclude that LC3 and STRAP regulate JMY’s actin assembly activities in trans during autophagy.


2018 ◽  
Author(s):  
Xiaohua Hu ◽  
R. Dyche Mullins

AbstractDuring autophagy actin filament networks move and remodel cellular membranes to form autophagosomes that enclose and metabolize cytoplasmic contents. Two actin regulators, WHAMM and JMY, participate in autophagosome formation, but the signals linking autophagy to actin assembly are poorly understood. We show that, in non-starved cells, cytoplasmic JMY co-localizes with STRAP, a regulator of JMY’s nuclear functions, on non-motile vesicles with no associated actin networks. Upon starvation, JMY shifts to motile, LC3-containing membranes that move on actin comet tails. LC3 enhances JMY’s de novo actin nucleation activity via a cryptic actin-binding sequence near JMY’s N-terminus, and STRAP inhibits JMY’s ability to nucleate actin and activate the Arp2/3 complex. Cytoplasmic STRAP negatively regulates autophagy. Finally, we use purified proteins to reconstitute LC3‐ and JMY-dependent actin network formation on membranes, and inhibition of network formation by STRAP. We conclude that LC3 and STRAP regulate JMY’s actin assembly activities in trans during autophagy.eTOC BlurbThe actin regulator JMY creates filament networks that move membranes during autophagy. We find that, in unstarved cells, JMY is inhibited by interaction with the STRAP protein, but upon starvation JMY is recruited away from STRAP and activated by LC3.


2017 ◽  
Vol 216 (8) ◽  
pp. 2463-2479 ◽  
Author(s):  
Hui-Chia Yu-Kemp ◽  
James P. Kemp ◽  
William M. Brieher

Cells can control actin polymerization by nucleating new filaments or elongating existing ones. We recently identified CRMP-1 as a factor that stimulates the formation of Listeria monocytogenes actin comet tails, thereby implicating it in actin assembly. We now show that CRMP-1 is a major contributor to actin assembly in epithelial cells, where it works with the Ena/VASP family member EVL to assemble the actin cytoskeleton in the apical cortex and in protruding lamellipodia. CRMP-1 and EVL bind to one another and together accelerate actin filament barbed-end elongation. CRMP-1 also stimulates actin assembly in the presence of VASP and Mena in vitro, but CRMP-1–dependent actin assembly in MDCK cells is EVL specific. Our results identify CRMP-1 as a novel regulator of actin filament elongation and reveal a surprisingly important role for CRMP-1, EVL, and actin polymerization in maintaining the structural integrity of epithelial sheets.


2016 ◽  
Vol 110 (4) ◽  
pp. 817-826 ◽  
Author(s):  
Marion Jasnin ◽  
Alvaro H. Crevenna

2016 ◽  
Vol 27 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Sofya Borinskaya ◽  
Katrina B. Velle ◽  
Kenneth G. Campellone ◽  
Arthur Talman ◽  
Diego Alvarez ◽  
...  

The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails—dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens.


2015 ◽  
Vol 43 (1) ◽  
pp. 84-91 ◽  
Author(s):  
J. Victor Small

Actin polymerization is harnessed by cells to generate lamellipodia for movement and by a subclass of pathogens to facilitate invasion of their infected hosts. Using electron tomography (ET), we have shown that lamellipodia are formed via the generation of subsets of actin filaments joined by branch junctions. Image averaging produced a 2.9 nm resolution model of branch junctions in situ and revealed a close fit to the electron density map of the actin-related protein 2/3 (Arp2/3)–actin complex in vitro. Correlated live-cell imaging and ET was also used to determine how actin networks are created and remodelled during the initiation and inhibition of protrusion in lamellipodia. Listeria, Rickettsia and viruses, such as vaccinia virus and baculovirus, exploit the actin machinery of host cells to generate propulsive actin comet tails to disseminate their infection. By applying ET, we have shown that baculovirus generates at its rear a fishbone-like array of subsets of branched actin filaments, with an average of only four filaments engaged in pushing at any one time. In both of these studies, the application of ET of negatively stained cytoskeletons for higher filament resolution and cryo-ET for preserving overall 3D morphology was crucial for obtaining a complete structure–function analysis of actin-driven propulsion.


PLoS Biology ◽  
2014 ◽  
Vol 12 (1) ◽  
pp. e1001765 ◽  
Author(s):  
Jan Mueller ◽  
Julia Pfanzelter ◽  
Christoph Winkler ◽  
Akihiro Narita ◽  
Christophe Le Clainche ◽  
...  

2012 ◽  
Vol 287 (42) ◽  
pp. 35722-35732 ◽  
Author(s):  
Kieran P. M. Normoyle ◽  
William M. Brieher

Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.


Sign in / Sign up

Export Citation Format

Share Document