wavy cavity
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Prabir Barman ◽  
PS Rao

In this piece of work, a numerical investigation of natural convection is carried out on the buoyancy-driven flow of nanofluids and heat transfer through porous media packed inside a wavy cavity. The cavity is placed horizontal, and its right vertical wall is of wavy nature, the bottom and top walls of the cavity are adiabatic, and there is a temperature difference between the left and right vertical wall. The dimensionless governing equations for the flow of nanofluids through the Darcian porous media are solved iteratively by using finite difference method. The study is conducted for wide range of governing parameters, such as Rayleigh-Darcy number [Formula: see text], nanoparticle volume fraction [Formula: see text] for three types of nanofluids [Formula: see text]-[Formula: see text], Cu-[Formula: see text], TiO2-[Formula: see text], the waviness of the vertical wall controlled by dimensionless length of amplitude of the wave [Formula: see text] and number of undulations per unit length ( N = 1, 3, 5). The simulated results reveals that the presence of nanoparticles enhances the convective heat transfer process at low Ra, and the wall affects the local convection rate and it also controls the overall heat transfer rate. For a cavity with N = 3, [Formula: see text] is increased by 33% at Ra = 10, and at [Formula: see text] has a drop by 10% as the a is increased from 0.05 to 0.25 having 20% of nanoparticles.


2021 ◽  
pp. 116324
Author(s):  
Honghe Nong ◽  
Abdulnasser Mahmood Fatah ◽  
S.A. Shehzad ◽  
T. Ambreen ◽  
Mahmoud M. Selim ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ammar I. Alsabery ◽  
Tahar Tayebi ◽  
Ali J. Chamkha ◽  
Ishak Hashim

Abstract This study investigates thermal natural convective heat transfer in a nanofluid filled-non-Darcian porous and wavy-walled domain under the local thermal non-equilibrium condition. The considered cavity has corrugated and cold vertical walls and insulated horizontal walls except the heated part positioned at the bottom wall. The transport equations in their non-dimensional model are numerically solved based on the Galerkin finite-element discretization technique. The dimensionless governing parameters of the present work are the nanoparticle in volume concentration, the Darcy number, number of undulations, modified heat conductivity ratio, dimensionless heated part length, and location. Comparisons with other published theoretical and experimental results show good agreement with the present outcomes. The findings indicate that the heater length, its position, and the waves number on the side vertical walls as well as the nanoparticles concentration can be the control parameters for free convective motion and heat transport within the wavy cavity.


Author(s):  
M. Fayz-Al-Asad ◽  
M. J. H. Munshi ◽  
M.M.A. Sarker

The present study aims to analyze the natural convection flow and heat transfer in a wavy cavity with a single horizontal fin attached to its hot wall. Galerkin weighted residual finite element technique has been employed to solve the governing nonlinear dimensionless equations. The effects of model parameters like Rayleigh number, fin length and location on the fluid flow and heat transfer are investigated. The obtained results are exhibited graphically in terms of flow structure, temperature dispersion, velocity field, fin effectiveness, local Nusselt number, and average Nusselt number. It is observed that the different fin length and location have a substantial effect on flow structure and temperature field. Fin effectiveness is also studied and the highest fin effectiveness was found at fin length (L = 0.75). Besides, it is also found that the mean Nusselt number increases significantly with the increase of Rayleigh number and fin length. Wavy cavity becomes more effective on heat transfer behaviors and fluid flow than that of a square cavity.


Sign in / Sign up

Export Citation Format

Share Document