Self-gasified biosystems for enhanced oil recovery

Author(s):  
B. A. Suleimanov ◽  
S. J. Rzayeva ◽  
U. T. Akhmedova

Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-displacing agents along with a significant amount of gases, mainly carbon dioxide. Earlier, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than nongasified systems. In a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.

2021 ◽  
Author(s):  
Baghir Alakbar Suleimanov ◽  
Sabina Jahangir Rzayeva ◽  
Ulviyya Tahir Akhmedova

Abstract Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-dicing agents along with significant amount of gases, mainly carbon dioxide. In early, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than non-gasified systems. The slippage effect determines the behavior of gas–liquid systems in the SR under reservoir conditions. Slippage occurs more easily when the pore channel has a smaller average radius. Therefore, in a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. The theoretical and practical foundations for the preparation of single-phase self-gasified biosystems and the implementation of the SR under reservoir conditions have been developedSR under reservoir conditions. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


2016 ◽  
Vol 4 (2) ◽  
pp. 69 ◽  
Author(s):  
Cristiano José de Andrade ◽  
Gláucia Maria Pastore

Worldwide oil production has been declining. Microbial enhanced oil recovery is one of the most important tertiary recovery processes. The aim of this work was to evaluate the surface activity properties of surfactin and mannosylerithritol lipids-B. In our previous studies, surfactin and mannosylerithritol lipids were produced using cassava wastewater as substrate and then purified by ultrafiltration. Thus, this work extends our previous studies. Experiments of surface activity under extreme conditions (temperature, ionic strength and pH), oil displacement, removal of oil from sand and emulsification index were carried out. Central composite rotational design was performed under extreme conditions of temperature, pH and ionic strength. The results indicated that ionic strength significantly affected the surface activity of surfactin. On the other hand, ionic strength, but also temperature and pH significantly affected the tenso activity of mannosylerithritol lipids-B. Regarding oil displacement test, mannosylerithritol lipids-B showed higher clear zone than surfactin. Contrary, in the experiments of removal of crude oil from sand, minimal differences were observed between surfactin and mannosylerithritol lipids-B. Therefore, both surfactin and mannosylerithritol lipids-B showed good surface activity under extreme conditions. In addition, it seems that mannosylerithritol lipids-B is subtly better than surfactin for microbial enhanced oil recovery.


1979 ◽  
Vol 19 (04) ◽  
pp. 242-252 ◽  
Author(s):  
R.S. Metcalfe ◽  
Lyman Yarborough

Abstract Carbon dioxide flooding under miscible conditions is being developed as a major process for enhanced oil recovery. This paper presents results of research studies to increase our understanding of the multiple-contact miscible displacement mechanism for CO2 flooding. Carbon dioxide displacements of three synthetic oils of increasing complexity (increasing number of hydrocarbon components) are described. The paper concentrates on results of laboratory flow studies, but uses results of phase-equilibria and numerical studies to support the conclusions.Results from studies with synthetic oils show that at least two multiple-contact miscible mechanisms, vaporization and condensation, can be identified and that the phase-equilibria data can be used as a basis for describing the mechanism. The phase-equilibria change with varying reservoir conditions, and the flow studies show that the miscible mechanism depends on the phase-equilibria behavior. Qualitative predictions with mathematical models support our conclusions.Phase-equilibria data with naturally occurring oils suggest the two mechanisms (vaporization and condensation) are relevant to CO2 displacements at reservoir conditions and are a basis for specifying the controlling mechanisms. Introduction Miscible-displacement processes, which rely on multiple contacts of injected gas and reservoir oil to develop an in-situ solvent, generally have been recognized by the petroleum industry as an important enhanced oil-recovery method. More recently, CO2 flooding has advanced to the position (in the U.S.) of being the most economically attractive of the multiple-contact miscibility (MCM) processes. Several projects have been or are currently being conducted either to study or use CO2 as an enhanced oil-recovery method. It has been demonstrated convincingly by Holm and others that CO2 can recover oil from laboratory systems and therefore from the swept zone of petroleum reservoirs using miscible displacement. However, several contradictions seem to exist in published results.. These authors attempt to establish the mechanism(s) through which CO2 and oil form a miscible solvent in situ. (The solvent thus produced is capable of performing as though the two fluids were miscible when performing as though the two fluids were miscible when injected.) In addition, little experimental work has been published to provide support for the mechanisms of multiple-contact miscibility, as originally discussed by Hutchinson and Braun.One can reasonably assume that the miscible CO2 process will be related directly to phase equilibria process will be related directly to phase equilibria because it involves intimate contact of gases and liquids. However, no data have been published to indicate that the mechanism for miscibility development may differ for varying phase-equilibria conditions.This paper presents the results of both flow and phase-equilibria studies performed to determine the phase-equilibria studies performed to determine the mechanism(s) of CO2 multiple-contact miscibility. These flow studies used CO2 to displace three multicomponent hydrocarbon mixtures under first-contact miscible, multiple-contact miscible, and immiscible conditions. Results are presented to support the vaporization mechanism as described by Hutchinson and Braun, and also to show that more than one mechanism is possible with CO2 displacements. The reason for the latter is found in the results of phase-equilibria studies. SPEJ P. 242


2021 ◽  
Vol 21 (1) ◽  
pp. 28-35
Author(s):  
Stanislav A. Stanislav A. ◽  
◽  
Oleg A. Morozyuk ◽  
Konstantin S. Kosterin ◽  
Semyon P. Podoinitsyn ◽  
...  

As an option for enhancing oil recovery of a high-viscosity Permo-Carboniferous reservoir associated with the Usinskoye field, the use of technology based on technogenic carbon dioxide as an injection agent is considered. In the world practice, several fields are known as close in their parameters to the parameters of the Permo-Carboniferous reservoir, and in which CO2 injection was accepted as successful. Based on this, CO2 injection can potentially be applicable in the conditions of a Permo-Carboniferous reservoir. At present, as a result of the various development technologies implementation, reservoir zones are distinguished, characterized by different thermobaric properties. Depending on reservoir conditions, when displacing oil with gases, various modes of oil displacement can be realized. This article describes the results of studies carried out to study the effect of the concentration of carbon dioxide on the properties of high-viscosity oil in the Permo-Carboniferous Reservoir of the Usinskoye field, as well as the results of filtration experiments on slim models performed to assess the oil displacement regime under various temperature and pressure conditions of the Permo-Carboniferous Reservoir. The study of the influence of CO2 concentration on oil properties was carried out using the standard PVT research technique. The displacement mode was assessed using the slim-tube technique. Based on the performed experiments, it was established that an increase in the concentration of CO2 in high-viscosity oil led to a noticeable change in its properties; for the conditions of a Permo-Carboniferous Reservoir, the most probable mode of oil displacement by carbon dioxide was established. Difficulties associated with the preparation of the CO2-heavy oil system were described separately. Based on a literature review, it was shown that the rate of mixing of oil with carbon dioxide depended on certain conditions.


2012 ◽  
Author(s):  
Eduardo J. Gudina ◽  
Ligia R. Rodrigues ◽  
J. Couto Teixeira ◽  
Jorge F. Brando Pereira ◽  
Laura Palma Soares

2014 ◽  
Vol 625 ◽  
pp. 522-525 ◽  
Author(s):  
Nur Hashimah Alias ◽  
Mohd Sabri Zulkifli ◽  
Shareena Fairuz Abdul Manaf ◽  
Effah Yahya ◽  
Nurul Aimi Ghazali ◽  
...  

This article is an overview of microbial enhanced oil recovery (MEOR) and the potential ofSaccharomycesCerevisiaeto be applied in MEOR. MEOR may have same mechanisms with commercial enhanced oil recovery (EOR) but it used biological approach in improving oil recovery.SaccharomycesCerevisiaeproduced carbon dioxide and ethanol under anaerobic condition. The carbon dioxide and ethanol that produced by this microbe are two from the six main MEOR agents in improving oil recovery. This articles also discussed on previous MEOR pilot projects that were conducted in Argentina, China and Malaysia.


2013 ◽  
Vol 807-809 ◽  
pp. 2562-2567
Author(s):  
Tao Ping Chen ◽  
Yu Guo Wang

The natural oil sand from Qi 40 block formation is made into 5 teams total 10 high temperature and pressure long double tube reservoir nonhomogeneity models .The experimental oil is simulation oil which is made by mixing the wellhead crude oil with diesel. On the base that steam soaking and steamdriving recovery reach to the current oilfield average level, we do 1 group double tube steam +CO2 .The natural oil sand from Qi 40 block formation is made into 5 teams total 10 high temperature and pressure long double tube reservoir nonhomogeneity models .The experimental oil is simulation oil which is made by mixing the wellhead crude oil with diesel. On the base that steam soaking and steamdriving recovery reach to the current oilfield average level, we do 1 group double tube steam +CO2 composite displacement experiment and 4 group double tube surfactant adjustable profile + steam +CO2 composite displacement experiment. And record after steamflooding steam drive with carbon dioxide and surfactant improvement value. The results show that in the steam composite flooding, enhanced oil recovery rate increases as the number of composite plug PV growing. Carbon dioxide and steam are injecter by 1:1 alternately and composite plug is 0.3PV, in which enhanced oil recovery rate can reach 19% and cost of oil displacement agent is 38.77 Yuan/ton of oil. Carbon dioxide and II thermostability discharge aiding agent are injecter by 1:1 alternately and thebest composite slug is 0.3PV, in which enhanced oil recovery rate can reach 23.7% and cost of oil displacement agent is 289.66 Yuan/ton of oil. When the plug PV number is same(0.3), surfactant + CO2 composite plug can improve more 4.7% than steam +CO2. Hence, thermostability discharge aiding agent have some effects on improving recovery.


Sign in / Sign up

Export Citation Format

Share Document