nonlinear normal mode
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 1-8
Author(s):  
D. R. C. NAIR ◽  
B. CHAKRAVARTY ◽  
P. NIYOGI

 A simple version of implicit nonlinear normal mode initialization is applied to a limited area one-level primitive equation model over a tropical domain. The model formulation is based on shallow water equations in spherical co-ordinate and potential enstrophy conserving finite difference scheme is employed. The model is used for predicting the movement of a typical monsoon depression formed over the Bay of Bengal. The above scheme is found to be very effective as it requires only three iterations for attaining balance between the mass and wind tields. However this model is not able to predict the movement of the depression very ac-curately due to the limitations of such a one-level model.


Author(s):  
V. V. Sminrov ◽  
L. I. Manevitch

We present the results of analytical study of the significant regularities which are inherent to forced nonlinear oscillations of a string with uniformly distributed discrete masses, without its preliminary stretching. It was found recently that a corresponding autonomous system admits a series of nonlinear normal modes with a lot of possible intermodal resonances and that similar synchronized solutions can exist in the presence of a periodic external field also. The paper is devoted to theoretical explanation of numerical data relating to one of possible scenarios of intermodal interaction which was numerically revealed earlier. This is unidirectional energy flow from unstable nonlinear normal mode to nonlinear normal modes with higher wavenumbers under the conditions of sonic vacuum. The mechanism of such a scenario has not yet been clarified contrary to alternative mechanisms consisting in almost simultaneous energy flow to all nonlinear normal modes with breaking the above-mentioned conditions of sonic vacuum. We begin with a description of single-mode manifolds and then show that consideration of arbitrary double mode manifolds is sufficient for solution of the problem. Because of this, the two-modal equations of motion can be reduced to a linear equation which describes a perturbation of initially excited nonlinear normal mode of the forced system in the conditions of sonic vacuum. We have found analytical representation (in the parametric space) of the thresholds for all possible energy transfers corresponding to unidirectional energy flow from unstable nonlinear normal modes. The analytical results are in a good agreement with previous numerical calculations.This article is part of the theme issue ‘Nonlinear energy transfer in dynamical and acoustical systems’.


2017 ◽  
Vol 2017.92 (0) ◽  
pp. M903
Author(s):  
Shunichi NAKAMURA ◽  
Ryuichi TARUMI ◽  
Yoji SHIBUTANI

2016 ◽  
Vol 795 ◽  
pp. 914-949 ◽  
Author(s):  
Hossein A. Kafiabad ◽  
Peter Bartello

If classical quasigeostrophic (QG) flow breaks down at smaller scales, it gives rise to questions of whether higher-order nonlinear balance can be maintained, to what scale and for how long. These are naturally followed by asking how this is affected by stratification and rotation. To address these questions, we perform non-hydrostatic Boussinesq simulations where the initial data is balanced using the Baer–Tribbia nonlinear normal mode initialization scheme (NNMI), which is accurate to second order in the Rossby number, as the next-order improvement to first-order QG theory. The NNMI procedure yields an ageostrophic contribution to the energy spectrum that has a very steep slope. However, as time passes, a shallow range emerges in the ageostrophic spectrum when the Rossby number is large enough for a given Reynolds number. It is argued that this shallow range is the unbalanced part of the motion that develops spontaneously in time and eventually dominates the energy at small scales. If the initial flow is not nonlinearly balanced, the shallow range emerges at even lower Rossby number and it appears at larger scales. Through numerous simulations at different rotation and stratification, this study gives a clear picture of how energy is cascaded in different initially balanced regimes of rotating stratified flow. We find that at low Rossby number the flow mainly consists of a geostrophic part and a balanced ageostrophic part with a steep spectrum. As the Rossby number increases, the unbalanced part of the ageostrophic energy increases at a rate faster than the balanced part. Hence, the total energy spectrum displays a shallow range above a transition wavenumber. This wavenumber evolves to smaller values as rotation weakens.


Sign in / Sign up

Export Citation Format

Share Document