nonlinear normal modes
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 37)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Dongxiao Hong ◽  
Thomas L. Hill ◽  
Simon A. Neild

Abstract Predicting the forced responses of nonlinear systems is a topic that attracts extensive studies. The energy balancing method considers the net energy transfer in and out of the system over one period, and establishes connections between forced responses and nonlinear normal modes (NNMs). In this paper, we consider the energy balancing across multiple harmonics of NNMs for predicting forced resonances. This technique is constructed by combining the energy balancing mechanism with restrictions (established via excitation scenarios) on external forcing and harmonic phase-shifts; a semi-analytical framework is derived to achieve both accurate/robust results and efficient computations. With known inputs from NNM solutions, the required forcing amplitudes to reach NNMs at resonances, along with their discrepancy, i.e. the harmonic phase-shifts, are computed via a one-step scheme. Several examples are presented for different excitation scenarios to demonstrate the applicability of this method, and to show its capability in accurately predicting the existence of an isola where multiple harmonics play a significant part in the response.


Author(s):  
Yekai Sun ◽  
Jie Yuan ◽  
Alessandra Vizzaccaro ◽  
Loïc Salles

AbstractThe nonlinear modes of a non-conservative nonlinear system are sometimes referred to as damped nonlinear normal modes (dNNMs). Because of the non-conservative characteristics, the dNNMs are no longer periodic. To compute non-periodic dNNMs using classic methods for periodic problems, two concepts have been developed in the last two decades: complex nonlinear mode (CNM) and extended periodic motion concept (EPMC). A critical assessment of these two concepts applied to different types of non-conservative nonlinearities and industrial full-scale structures has not been thoroughly investigated yet. Furthermore, there exist two emerging techniques which aim at predicting the resonant solutions of a nonlinear forced response using the dNNMs: extended energy balance method (E-EBM) and nonlinear modal synthesis (NMS). A detailed assessment between these two techniques has been rarely attempted in the literature. Therefore, in this work, a comprehensive comparison between CNM and EPMC is provided through two illustrative systems and one engineering application. The EPMC with an alternative damping assumption is also derived and compared with the original EPMC and CNM. The advantages and limitations of the CNM and EPMC are critically discussed. In addition, the resonant solutions are predicted based on the dNNMs using both E-EBM and NMS. The accuracies of the predicted resonances are also discussed in detail.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Cheng Li ◽  
Hongguang Li

A modified Galerkin method is proposed to approximate the nonlinear normal modes in a new type of a two-stage isolator. Besides the displacement of payload and the force transmissibility of this typical nonlinear dynamic system, the nonlinear normal modes defined as invariant manifolds can provide more information about the nonlinear coupling between the system components when periodic motions corresponding to the normal modes of the system occur. The presented approach applies a combination of finite-element discretization and Fourier series expansion for the approximate invariant manifolds. A Galerkin projection of the governing equations for the approximate invariant manifolds yields a set of nonlinear algebraic equations in expansion coefficients, which can be solved numerically with a general choice of zero as initial guess for the cases in this work. The resultant approximate solutions for the invariant manifolds can accurately describe the nonlinear interactions between system components in periodic motions of the specific nonlinear normal modes. In addition, one can solve the invariant manifolds for an annular domain of interest directly by this method, without considering other domain that includes the origin of phase space.


2021 ◽  
Author(s):  
Mohammed Ameen Ameen Al Shudeifat ◽  
Adnan Salem Saeed

Abstract The frequency-energy plots (FEPs) of two-degree-of-freedom linear structures attached to piecewise nonlinear energy sink (PNES) are generated here and thoroughly investigated. This study provides the FEP analysis of such systems for further understanding of nonlinear targeted energy transfer (TET) by the PNES. The attached PNES incorporates a symmetrical clearance zone of zero stiffness content about its equilibrium position where the boundaries of the zone are coupled with linear structure by linear stiffness elements. In addition, linear viscous damping is selected to be continuous during PNES mass oscillation. The underlying nonlinear dynamical behaviour of the considered structure-PNES systems is investigated by generating the fundamental backbone curves of the FEP and the bifurcated subharmonic resonance branches using numerical continuation methods. Accordingly, interesting dynamical behaviour of the nonlinear normal modes (NNMs) of the structure-PNES system on different backbones and subharmonic resonance branches has been observed. In addition, the imposed wavelet transform frequency spectrums on the FEPs have revealed that the TET takes place where it is dominated by the nonlinear action of the PNES.


Sign in / Sign up

Export Citation Format

Share Document