plasma depletions
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 16)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 64 (4) ◽  
pp. PA437
Author(s):  
Aashiq Hussain Bhat ◽  
Bilal Ahmad Ganaie ◽  
T K Ramkumar ◽  
Manzoor A Malik ◽  
P Pavan Chaitanya

We report the observation of plasma depletions/plumes in the F region ionosphere over a low to middle latitude transition region in the Indian sector. The observation of these plasma depletions is based on the data obtained in May 2019 through the all-sky airglow CCD imager installed in the campus of University of Kashmir, Srinagar (34.12 °N, 74.83 °E, magnetic latitude 25.91 °N). The depletions on the two consecutive nights of 05 and 06 May 2019 are aligned along the North-South (N-S) direction and drift westward. Several depletion bands along with some enhancement bands are seen in the 630-nm airglow images throughout the two nights. The observed structures show certain characteristics similar to Medium Scale Traveling Ionospheric Disturbances (MSTIDs) but these airglow features are not completely periodic. Further, in the observed depletion bands some East-West asymmetries are observed along with the structured tree-like branches of the airglow depletions. Some depletion bands even bifurcate leading to the inference that the structures are signatures of plasma irregularities rather than the usual MSTIDs observed in low-mid latitude transition region. The westward drift of the depletions especially during geomagnetic quiet times over this region makes this study significant since it offers a possible evidence that shows extension of spread F irregularities from the mid latitude region to the low-mid latitude transition region. In this paper, we point out some possible mechanisms related to the occurrence of plasma depletions at this region and their westward movement during geomagnetic quiet times.  


2020 ◽  
Vol 12 (22) ◽  
pp. 3782
Author(s):  
Carlos Molina ◽  
Adriano Camps

At some frequencies, Earth’s ionosphere may significantly impact satellite communications, Global Navigation Satellite Systems (GNSS) positioning, and Earth Observation measurements. Due to the temporal and spatial variations in the Total Electron Content (TEC) and the ionosphere dynamics (i.e., fluctuations in the electron content density), electromagnetic waves suffer from signal delay, polarization change (i.e., Faraday rotation), direction of arrival, and fluctuations in signal intensity and phase (i.e., scintillation). Although there are previous studies proposing GNSS Reflectometry (GNSS-R) to study the ionospheric scintillation using, for example TechDemoSat-1, the amount of data is limited. In this study, data from NASA CYGNSS constellation have been used to explore a new source of data for ionospheric activity, and in particular, for travelling equatorial plasma depletions (EPBs). Using data from GNSS ground stations, previous studies detected and characterized their presence at equatorial latitudes. This work presents, for the first time to authors’ knowledge, the evidence of ionospheric bubbles detection in ocean regions using GNSS-R data, where there are no ground stations available. The results of the study show that bubbles can be detected and, in addition to measure their dimensions and duration, the increased intensity scintillation (S4) occurring in the bubbles can be estimated. The bubbles detected here reached S4 values of around 0.3–0.4 lasting for some seconds to few minutes. Furthermore, a comparison with data from ESA Swarm mission is presented, showing certain correlation in regions where there is S4 peaks detected by CYGNSS and fluctuations in the plasma density as measured by Swarm.


2020 ◽  
Author(s):  
Jong-Min Choi ◽  
Young-Sil Kwak ◽  
Hyosub Kil ◽  
Jaeheung Park ◽  
Woo Kyoung Lee ◽  
...  
Keyword(s):  
F Region ◽  

2020 ◽  
Author(s):  
Yang Liu ◽  
Zheng Li ◽  
Jinling Wang

<p>A series of studies have suggested that a geomagnetic storm can accelerate the formation of plasma depletions and the generation of ionospheric irregularities. Using observation data from the Continuously Operating Reference Stations (CORS) network in the USA, the responses of the ionospheric total electron content (TEC) to the geomagnetic storm on September 8, 2017 are studied in detail. A mid-latitude trough was discovered from 01:00 UT to 06:00 UT in the USA with a length exceeding 5000 km. The probable causes are the combination of a classic negative storm response with increments in the neutral composition and the expansion of the auroral oval, pushing the mid-latitude trough equatorward.  Super-scale plasma depletion was observed by SWARM data accompanied by the expansion of mid-latitude trough. Both PPEF from high latitudes and pole-ward neutral wind are responsible for the large-scale ionospheric irregularities. Medium-scale travelling ionospheric disturbances (MSTID) with wavelengths of 600–700 km were generated accompanied by a drop and perturbation in the electron density. The intensity of the MSTID fluctuations reached over 2.5 TECU, which were discovered by filtering the differential TEC. The evolution of plasma depletions were associated with the MSTID propagating from high latitudes to low latitudes. SWARM spaceborne observations also showed a drop in the electron density from 10<sup>5</sup> to 10<sup>3</sup> compared to the background values at 28° N, 96° W, and 25° N, 95° W. This research investigates super-scale plasma depletions generated by geomagnetic storms using both CORS GNSS and spaceborne observations. The proposed work is valuable for better understanding the evolution of ionospheric depletions during geomagnetic storms.</p>


Radio Science ◽  
2020 ◽  
Vol 55 (3) ◽  
Author(s):  
Mogese Wassaie Mersha ◽  
Elias Lewi ◽  
Norbert Jakowski ◽  
Volker Wilken ◽  
Jens Berdermann ◽  
...  

2019 ◽  
Vol 124 (10) ◽  
pp. 8023-8038 ◽  
Author(s):  
Xin Wan ◽  
Chao Xiong ◽  
Hui Wang ◽  
Kedeng Zhang ◽  
Zhichao Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document