scholarly journals Westward Drift of Ionospheric Plasma Irregularities over a Low to Mid-latitude Transition Region in Indian Sector

2021 ◽  
Vol 64 (4) ◽  
pp. PA437
Author(s):  
Aashiq Hussain Bhat ◽  
Bilal Ahmad Ganaie ◽  
T K Ramkumar ◽  
Manzoor A Malik ◽  
P Pavan Chaitanya

We report the observation of plasma depletions/plumes in the F region ionosphere over a low to middle latitude transition region in the Indian sector. The observation of these plasma depletions is based on the data obtained in May 2019 through the all-sky airglow CCD imager installed in the campus of University of Kashmir, Srinagar (34.12 °N, 74.83 °E, magnetic latitude 25.91 °N). The depletions on the two consecutive nights of 05 and 06 May 2019 are aligned along the North-South (N-S) direction and drift westward. Several depletion bands along with some enhancement bands are seen in the 630-nm airglow images throughout the two nights. The observed structures show certain characteristics similar to Medium Scale Traveling Ionospheric Disturbances (MSTIDs) but these airglow features are not completely periodic. Further, in the observed depletion bands some East-West asymmetries are observed along with the structured tree-like branches of the airglow depletions. Some depletion bands even bifurcate leading to the inference that the structures are signatures of plasma irregularities rather than the usual MSTIDs observed in low-mid latitude transition region. The westward drift of the depletions especially during geomagnetic quiet times over this region makes this study significant since it offers a possible evidence that shows extension of spread F irregularities from the mid latitude region to the low-mid latitude transition region. In this paper, we point out some possible mechanisms related to the occurrence of plasma depletions at this region and their westward movement during geomagnetic quiet times.  

2019 ◽  
Vol 37 (4) ◽  
pp. 657-672
Author(s):  
Claudia M. N. Candido ◽  
Jiankui Shi ◽  
Inez S. Batista ◽  
Fabio Becker-Guedes ◽  
Emília Correia ◽  
...  

Abstract. We present a case study of unusual spread-F structures observed by ionosondes at two equatorial and low-latitude Brazilian stations – São Luís (SL: 44.2∘ W, 2.33∘ S; dip angle: −6.9∘) and Fortaleza (FZ: 38.45∘ W, 3.9∘ S; dip angle: −16∘). The irregularity structures observed from midnight to postmidnight hours of moderate solar activity (F10.7 < 97 sfu, where 1 sfu = 10−22 W m−2 s−1) have characteristics different from typical post-sunset equatorial spread F. The spread-F traces first appeared at or above the F-layer peak and gradually became well-formed mixed spread F. They also appeared as plasma depletions in the 630.0 nm airglow emissions made by a wide-angle imager located at the nearby low-latitude station Cajazeiras (CZ: 38.56∘ W, 6.87∘ S; dip angle: −21.4∘). The irregularities appeared first over FZ and later over SL, giving evidence of an unusual westward propagation or a horizontal plasma advection. The drift-mode operation available in one of the ionosondes (a digital portable sounder, DPS-4) has enabled us to analyze the horizontal drift velocities and directions of the irregularity movement. We also analyzed the neutral wind velocity measured by a Fabry–Pérot interferometer (FPI) installed at CZ and discuss its possible role in the development of the irregularities.


2009 ◽  
Vol 27 (6) ◽  
pp. 2371-2381 ◽  
Author(s):  
P.-D. Pautet ◽  
M. J. Taylor ◽  
N. P. Chapagain ◽  
H. Takahashi ◽  
A. F. Medeiros ◽  
...  

Abstract. From September to November 2005, the NASA Living with a Star program supported the Spread-F Experiment campaign (SpreadFEx) in Brazil to study the effects of convectively generated gravity waves on the ionosphere and their role in seeding Rayleigh-Taylor instabilities, and associated equatorial plasma bubbles. Several US and Brazilian institutes deployed a broad range of instruments (all-sky imagers, digisondes, photometers, meteor/VHF radars, GPS receivers) covering a large area of Brazil. The campaign was divided in two observational phases centered on the September and October new moon periods. During these periods, an Utah State University (USU) all-sky CCD imager operated at São João d'Aliança (14.8° S, 47.6° W), near Brasilia, and a Brazilian all-sky CCD imager located at Cariri (7.4° S, 36° W), observed simultaneously the evolution of the ionospheric bubbles in the OI (630 nm) emission and the mesospheric gravity wave field. The two sites had approximately the same magnetic latitude (9–10° S) but were separated in longitude by ~1500 km. Plasma bubbles were observed on every clear night (17 from Brasilia and 19 from Cariri, with 8 coincident nights). These joint datasets provided important information for characterizing the ionospheric depletions during the campaign and to perform a novel longitudinal investigation of their variability. Measurements of the drift velocities at both sites are in good agreement with previous studies, however, the overlapping fields of view revealed significant differences in the occurrence and structure of the plasma bubbles, providing new evidence for localized generation. This paper summarizes the observed bubble characteristics important for related investigations of their seeding mechanisms associated with gravity wave activity.


2004 ◽  
Vol 22 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Y. Sahai ◽  
P. R. Fagundes ◽  
J. R. Abalde ◽  
A. A. Pimenta ◽  
J. A. Bittencourt ◽  
...  

Abstract. All-sky imaging observations of the F-region OI 630nm nightglow emission allow us to visualize large-scale equatorial plasma depletions, generally known as trans-equatorial plasma bubbles. Strong range type spread-F is the radio signature of these (magnetically) north-south aligned plasma depletions. An extensive database of the OI 630nm emission all-sky imaging observations has been obtained at Cachoeira Paulista (22.7°S, 45.0°W; dip latitude ∼16°S), Brazil, between the years 1987 and 2000. An analysis of these observations revealed that relatively few large-scale ionospheric plasma depletions occur during the months of May to August (southern winter, June solstice) in the Brazilian sector. Of the few that are observed during these months, some occur in association with geomagnetic storms and some do not. In this paper, a detailed analysis of the events when large-scale ionospheric plasma depletions were initiated and evolved during the June solstice periods are presented and discussed.Key words. Atmospheric composition and chemistry (airglow and aurora). Ionosphere (equatorial ionosphere; ionospheric irregularities)


2019 ◽  
Vol 37 (5) ◽  
pp. 807-818 ◽  
Author(s):  
Laysa Cristina Araujo Resende ◽  
Clezio Marcos Denardini ◽  
Giorgio Arlan Silva Picanço ◽  
Juliano Moro ◽  
Diego Barros ◽  
...  

Abstract. F region vertical drifts (Vz) are the result of the interaction between ionospheric plasma with the zonal electric field and the Earth's magnetic field. Abrupt variations in Vz are strongly associated with the occurrence of plasma irregularities (spread F) during the nighttime periods. These irregularities are manifestations of space weather in the ionosphere's environment without necessarily requiring a solar burst. In this context, the Brazilian Space Weather Study and Monitoring Program (Embrace) of the National Institute for Space Research (INPE) has been developing different indexes to analyze these ionospheric irregularities in the Brazilian sector. Therefore, the main purpose of this work is to produce a new ionospheric scale based on the analysis of the ionospheric plasma drift velocity, named AV. It is based on the maximum value of Vz (Vzp), which in turn is calculated through its relationship with the virtual height parameter, h′F, measured by the Digisonde Portable Sounder (DPS-4D) installed in São Luís (2∘ S, 44∘ W; dip: −2.3∘). This index quantifies the time relationship between the Vz peak and the irregularity observed in the ionograms. Thus, in this study, we analyzed 7 years of data, between 2009 and 2015, divided by season in order to construct a standardized scale. The results show there is a delay of at least 15 min between the Vzp observation and the irregularity occurrence. Finally, we believe that this proposed index allows for evaluating the impacts of ionospheric phenomena in the space weather environment.


2019 ◽  
Author(s):  
Laysa Cristina Araujo Resende ◽  
Clezio Marcos Denardini ◽  
Giorgio Arlan Silva Picanço ◽  
Juliano Moro ◽  
Diego Barros ◽  
...  

Abstract. F region vertical drifts (Vz) are the result of the interaction between the ionospheric plasma with the zonal electric field and the Earth's magnetic field. Abrupt variations in Vz are strongly associated with the occurrence of plasma irregularities (spread-F) during the nighttime periods. These irregularities are manifestations of the space weather in the ionosphere environment without necessarily require a solar burst. In this context, the Brazilian Space Weather Study and Monitoring Program (Embrace) of the National Institute for Space Research (INPE) has been developing different indexes to analyze these ionospheric irregularities in the Brazilian sector. Therefore, the main purpose of this work was to produce a new ionospheric scale based on the analysis of the ionospheric plasma drift velocity, named AV. It is based in the maximum value of Vz (Vzp), which in turn is calculated through its relationship with the virtual height parameter, h’F, measured by the Digisonde Portable Sounder (DPS-4D) installed in São Luís (2° S, 44° O, dip: −2,3°). This index quantifies the time relation between the Vz peak and the irregularity observed in the ionogramas. Thus, in this study, we analyzed 8 years of data, between 2009 and 2015, divided by season in order to construct a standardized scale. The results show there is a delay of at least 15 minutes between Vzp observation and the irregularity occurrence. Finally, we believe that this proposed index allow evaluating the impacts of ionospheric phenomena in the Space Weather environment recently.


1994 ◽  
Vol 6 (3) ◽  
pp. 411-417
Author(s):  
A.J. Foppiano ◽  
A.S. Rodger

Spread-F is caused by the presence of ionospheric electron concentration irregularities of scale-size of order 5 km at F-region altitudes. Estimates of spread-F in the vicinity of the maximum plasma frequency of the Flayer (foF2) have been determined at 15 min intervals from ionograms recorded over a ten day period (1–10 May 1986) both at Marsh (62.2°S, 58.9°W), King George Island, and Faraday (65.2°S, 64.3°W), Argentine Islands. The interval, at low solar activity, includes periods of quiet and disturbed geomagnetic activity. Spread-F is observed on every night at both stations. It is more frequent, slightly more intense and starts earlier at Argentine Islands than at King George Island. On most nights, spread-F ceases about local sunrise at 120 km altitude at both stations. On the days of highest geomagnetic activity, the onset of spread-F is delayed compared with days of lower activity. Spread-F is usually most intense on the night(s) following largest geomagnetic activity level, as measured by the geomagnetic index, Kp. The growth rate of the plasma instability processes causing the ionospheric irregularities is inversely related to electron concentration (foF22), amongst other parameters. Thus the lower foF2 values over Argentine Islands are consistent with more spread-F being observed by the higher latitude observatory. However, no firm relationship between the absolute value of foF2, the horizontal gradient of foF2 between the two observatories, and the onset of spread-F, is found. Thus it has not been possible to determine uniquely the instability process responsible for the formation of the plasma irregularities.


2020 ◽  
Author(s):  
Jong-Min Choi ◽  
Young-Sil Kwak ◽  
Hyosub Kil ◽  
Jaeheung Park ◽  
Woo Kyoung Lee ◽  
...  
Keyword(s):  
F Region ◽  

2015 ◽  
Vol 33 (11) ◽  
pp. 1403-1412 ◽  
Author(s):  
J. M. Smith ◽  
F. S. Rodrigues ◽  
E. R. de Paula

Abstract. We analyzed pre-midnight equatorial F region observations made by the 30 MHz coherent backscatter radar of São Luis, Brazil between August 2010 and February 2012. These measurements were processed, and used to create monthly maps of the echo occurrence as a function of local time and height. The maps show the inter-annual variability associated with equatorial spread F (ESF) occurrence in the Brazilian longitude sector. We also constructed monthly curves of the evening vertical drifts, for the Brazilian sector, using measurements by the ion velocity meter (IVM) onboard the C/NOFS satellite. The IVM evening drifts show a good overall agreement with the Scherliess and Fejer (1999) empirical model. Measured and model drifts show the development of the pre-reversal enhancement (PRE) of the vertical plasma drifts during ESF season. Using joint radar and satellite measurements, we found that evening (18:00–18:30 LT) mean non-negative drifts provide a necessary but not sufficient condition for the occurrence of topside ESF echoes. Evening downward (negative) drifts preceded the absence of topside ESF irregularities.


2008 ◽  
Vol 26 (11) ◽  
pp. 3355-3364 ◽  
Author(s):  
F. S. Rodrigues ◽  
D. L. Hysell ◽  
E. R. de Paula

Abstract. The 30 MHz coherent backscatter radar located at the equatorial observatory in São Luís, Brazil (2.59° S, 44.21° W, −2.35° dip lat) has been upgraded to perform coherent backscatter radar imaging. The wide field-of-view of this radar makes it well suited for radar imaging studies of ionospheric irregularities. Radar imaging observations were made in support to the spread F Experiment (SpreadFEx) campaign. This paper describes the system and imaging technique and presents results from a bottom-type layer that preceded fully-developed radar plumes on 25 October 2005. The radar imaging technique was able to resolve decakilometric structures within the bottom-type layer. These structures indicate the presence of large-scale waves (~35 km) in the bottomside F-region with phases that are alternately stable and unstable to wind-driven gradient drift instabilities. The observations suggest that these waves can also cause the initial perturbation necessary to initiate the Generalized Rayleigh-Taylor instability leading to spread F. The electrodynamic conditions and the scale length of the bottom-type layer structures suggest that the waves were generated by the collisional shear instability. These results indicate that monitoring bottom-type layers may provide helpful diagnostics for spread F forecasting.


Sign in / Sign up

Export Citation Format

Share Document