Studying the Ionospheric Responses Induced by a Geomagnetic Storm in September 2017 with Multiple Observations in America

Author(s):  
Yang Liu ◽  
Zheng Li ◽  
Jinling Wang

<p>A series of studies have suggested that a geomagnetic storm can accelerate the formation of plasma depletions and the generation of ionospheric irregularities. Using observation data from the Continuously Operating Reference Stations (CORS) network in the USA, the responses of the ionospheric total electron content (TEC) to the geomagnetic storm on September 8, 2017 are studied in detail. A mid-latitude trough was discovered from 01:00 UT to 06:00 UT in the USA with a length exceeding 5000 km. The probable causes are the combination of a classic negative storm response with increments in the neutral composition and the expansion of the auroral oval, pushing the mid-latitude trough equatorward.  Super-scale plasma depletion was observed by SWARM data accompanied by the expansion of mid-latitude trough. Both PPEF from high latitudes and pole-ward neutral wind are responsible for the large-scale ionospheric irregularities. Medium-scale travelling ionospheric disturbances (MSTID) with wavelengths of 600–700 km were generated accompanied by a drop and perturbation in the electron density. The intensity of the MSTID fluctuations reached over 2.5 TECU, which were discovered by filtering the differential TEC. The evolution of plasma depletions were associated with the MSTID propagating from high latitudes to low latitudes. SWARM spaceborne observations also showed a drop in the electron density from 10<sup>5</sup> to 10<sup>3</sup> compared to the background values at 28° N, 96° W, and 25° N, 95° W. This research investigates super-scale plasma depletions generated by geomagnetic storms using both CORS GNSS and spaceborne observations. The proposed work is valuable for better understanding the evolution of ionospheric depletions during geomagnetic storms.</p>

2021 ◽  
Author(s):  
Fuqing Huang ◽  
Jiuhou Lei ◽  
Chao Xiong

<p>Equatorial plasma bubbles (EPBs) are typically ionospheric irregularities that frequently occur at the low latitudes and equatorial regions, which can significantly affect the propagation of radio waves. In this study, we reported a unique strong EPB that happened at middle latitudes over the Asian sector during the quiescent period. The multiple observations including total electron content (TEC) from Beidou geostationary satellites and GPS, ionosondes, in-situ electron density from SWARM and meteor radar are used to explore the characteristic and mechanism of the observed EPB. The unique strong EPB was associated with great nighttime TEC/electron density enhancement at the middle latitudes, which moves toward eastward. The potential physical processes of the observed EPB are also discussed.</p>


2017 ◽  
Vol 35 (6) ◽  
pp. 1309-1326 ◽  
Author(s):  
Patricia Mara de Siqueira Negreti ◽  
Eurico Rodrigues de Paula ◽  
Claudia Maria Nicoli Candido

Abstract. Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.


2020 ◽  
Vol 12 (14) ◽  
pp. 2200
Author(s):  
Chao Gao ◽  
Shuanggen Jin ◽  
Liangliang Yuan

Geomagnetic storms are extreme space weather events, which have considerable impacts on the ionosphere and power transmission systems. In this paper, the ionospheric responses to the geomagnetic storm on 22 June 2015, are analyzed from ground-based and satellite-based Global Navigation Satellite System (GNSS) observations as well as observational data of digital ionosondes, and the main physical mechanisms of the ionospheric disturbances observed during the geomagnetic storm are discussed. Salient positive and negative storms are observed from vertical total electron content (VTEC) based on ground-based GNSS observations at different stages of the storm. Combining topside observations of Low-Earth-Orbit (LEO) satellites (GRACE and MetOp satellites) with different orbital altitudes and corresponding ground-based observations, the ionospheric responses above and below the orbits are studied during the storm. To obtain VTEC from the slant TEC between Global Positioning System (GPS) and LEO satellites, we employ a multi-layer mapping function, which can effectively reduce the overall error caused by the single-layer geometric assumption where the horizontal gradient of the ionosphere is not considered. The results show that the topside observations of the GRACE satellite with a lower orbit can intuitively detect the impact caused by the fluctuation of the F2 peak height (hmF2). At the same time, the latitude range corresponding to the peak value of the up-looking VTEC on the event day becomes wider, which is the precursor of the Equatorial Ionization Anomaly (EIA). However, no obvious response is observed in the up-looking VTEC from MetOp satellites with higher orbits, which indicates that the VTEC responses to the geomagnetic storm mainly take place below the orbit of MetOp satellites.


2020 ◽  
Vol 6 (1) ◽  
pp. 75-85
Author(s):  
Aleksandr Rubtsov ◽  
Boris Maletckii ◽  
Ekaterina Danilchuk ◽  
Ekaterina Smotrova ◽  
Aleksei Shelkov ◽  
...  

We present the results of the complex study of ionospheric parameter variations during two geomagnetic storms, which occurred on April 12–15, 2016. The study is based on data from a set of radiophysical and optical instruments. Both the storms with no sudden commencement were generated by high-speed streams from a coronal hole. Despite the minor intensity of the storms (Dst ≥ –55 and –59 nT), we have revealed a distinct ionospheric response to these disturbances. A negative response of electron density and F2-layer critical frequency was observed during the main phase of both the storms. The amplitude of the negative response was higher for the second storm. The period of negative electron density deviations was accompanied by an increase in the peak height, as well as by the downward plasma drift in the evening and night hours, which is not typical of quiet conditions. We have also recorded sharp peaks in the AATR (Along Arc TEC Rate) index and in total electron content noise spikes on average 2–2.5 times. This indicates an intensification of small-scale ionospheric disturbances caused by disturbed geomagnetic conditions and high substorm activity.


2019 ◽  
Vol 37 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Carlos Sotomayor-Beltran ◽  
Laberiano Andrade-Arenas

Abstract. In this work, the results of the analysis on total electron content (TEC) data before, during and after the geomagnetic storm of 8 September 2017 are reported. One of the responses to geomagnetic storms due to the southern vertical interplanetary magnetic field (Bz) is the enhancement of the electron density in the ionosphere. Vertical TEC (VTEC) from the Center for Orbit determination in Europe (CODE) along with a statistical method were used to identify positive and/or negative ionospheric storms in response to the geomagnetic storm of 8 September 2017. When analyzing the response to the storm of 8 September 2017 it was indeed possible to observe an enhancement of the equatorial ionization anomaly (EIA); however, what was unexpected was the identification of a local TEC enhancement (LTE) to the south of the EIA (∼40∘ S, right over New Zealand and extending towards the southeastern coast of Australia and also eastward towards the Pacific). This was a very transitory LTE that lasted approximately 4 h, starting at ∼ 02:00 UT on 8 September where its maximum VTEC increase was of 241.2 %. Using the same statistical method, comparable LTEs in a similar category geomagnetic storm, the 2015 St. Patrick's Day storm, were looked for. However, for the aforementioned storm no LTEs were identified. As also indicated in a past recent study for a LTE detected during the 15 August 2015 geomagnetic storm, an association between the LTE and the excursion of Bz seen during the 8 September 2017 storm was observed as well. Furthermore, it is very likely that a direct impact of the super-fountain effect along with traveling ionospheric disturbances may be playing an important role in the production of this LTE. Finally, it is indicated that the 8 September 2017 LTE is the second one to be detected since the year 2016.


2018 ◽  
Author(s):  
Donat V. Blagoveshchensky ◽  
Olga A. Maltseva ◽  
Maria A. Sergeeva

Abstract. The study is focused on the analysis of Total Electron Content (TEC) variations during six geomagnetic storms of different intensity: from Dstmin = −46 nT to Dstmin = −223 nT. The values of TEC deviations from its 27-day median value (δTEC) were calculated during the periods of the storms along three meridians: American, Euro-African and Asian-Australian. The following results were obtained. For the majority of the storms almost simultaneous occurrence of δTEC maximums was observed along the Asian-Australian and Euro-African meridians at the beginning of the storm. The transition from weak storm to superstorm (the increase of magnetic activity) almost does not affect the intensity of δTEC maximum. The effect revealed for the American sector during two storms was the movement of the disturbance front from Northern and Southern high latitudes towards the equator with the average velocity of ~ 400 m/s. The seasonal effect was most pronounced at Asian-Australian meridian, less often at Euro-African meridian and was not revealed at American meridian. Sometimes the seasonal effect can penetrate to the opposite hemisphere. The character of averaged δTEC variations for the intense storms was confirmed by GOES satellite data. The behaviour of correlation coefficient (R) between δTEC at three meridians was analyzed for each storm. In general, R > 0.5 between δTEC averaged along each meridian. This result is new. The possible reasons for the exceptions (when R 


Author(s):  
Dominic Chukwuebuka Obiegbuna ◽  
Francisca Nneka Okeke ◽  
Kingsley Chukwudi Okpala ◽  
Orji Prince Orji ◽  
Gregory Ibeabuchi Egba ◽  
...  

We have studied and compared the effects of full and partial halo geomagnetic storms on the high latitude ionosphere. The study used the total electron content (TEC) data obtained from the global positioning system (GPS) to examine the level of response of high latitude ionosphere around Ny Alesund, Norway to full and partial halo geomagnetic storms of June 23rd 2015 and January 1st 2016 respectively. This study was carried out using a dual frequency ground based GNSS observations at high latitude (NYAL: 78.56oN, 11.52oE) ionospheric station in Norway. The vertical TEC (VTEC) was extracted from Receiver Independent Exchange (RINEX) formatted GPS-TEC data using the GOPI Software developed by Seemala Gopi. The GOPI software is a GNSS-TEC analysis program which uses ephemeris data and differential code biases (DCBs) in estimating slant TEC (STEC) prior to its conversion to VTEC. From the results, the responses of the high latitude before the storm days were more positive than on the storm days. Also the overall response of the high latitude to the full halo geomagnetic storm was more positive with more impact than that of the partial halo geomagnetic storm.


Author(s):  
Fabricio dos Santos Prol ◽  
Mainul Hoque ◽  
Arthur Amaral Ferreira

As part of the space weather monitoring, the response of the ionosphere and plasmasphere to geomagnetic storms is typically under continuous supervision by operational services. Fortunately, Global Navigation Satellite System (GNSS) receivers on board low Earth orbit satellites provides a unique opportunity for developing image representations that can capture the global distribution of the electron density in the plasmasphere and topside ionosphere. Among the difficulties of plasmaspheric imaging based on GNSS measurements, the development of procedures to invert the Total Electron Content (TEC) into electron density distributions remains as a challenging task. In this study, a new tomographic reconstruction technique is presented to estimate the electron density from TEC data along the METOP (Meteorological Operational) satellites. The proposed method is evaluated during four geomagnetic storms to check the capabilities of the tomography for space weather monitoring. The investigation shows that the developed method can successfully capture and reconstruct well-known enhancement and decrease of electron density variabilities during storms. The comparison with in-situ electron densities has shown an improvement around 11% and a better description of plasma variabilities due to the storms compared to the background. Our study also reveals that the plasmasphere TEC contribution to ground-based TEC may vary 10 to 60% during geomagnetic storms, and the contribution tends to reduce during the storm-recovery phase


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 316 ◽  
Author(s):  
Rongxin Tang ◽  
Fantao Zeng ◽  
Zhou Chen ◽  
Jing-Song Wang ◽  
Chun-Ming Huang ◽  
...  

Ionospheric structure usually changes dramatically during a strong geomagnetic storm period, which will significantly affect the short-wave communication and satellite navigation systems. It is critically important to make accurate ionospheric predictions under the extreme space weather conditions. However, ionospheric prediction is always a challenge, and pure physical methods often fail to get a satisfactory result since the ionospheric behavior varies greatly with different geomagnetic storms. In this paper, in order to find an effective prediction method, one traditional mathematical method (autoregressive integrated moving average—ARIMA) and two deep learning algorithms (long short-term memory—LSTM and sequence-to-sequence—Seq2Seq) are investigated for the short-term predictions of ionospheric TEC (Total Electron Content) under different geomagnetic storm conditions based on the MIT (Massachusetts Institute of Technology) madrigal observation from 2001 to 2016. Under the extreme condition, the performance limitation of these methods can be found. When the storm is stronger, the effective prediction horizon of the methods will be shorter. The statistical analysis shows that the LSTM can achieve the best prediction accuracy and is robust for the accurate trend prediction of the strong geomagnetic storms. In contrast, ARIMA and Seq2Seq have relatively poor performance for the prediction of the strong geomagnetic storms. This study brings new insights to the deep learning applications in the space weather forecast.


Sign in / Sign up

Export Citation Format

Share Document