biaxial mechanical properties
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Zhang ◽  
Chen Li ◽  
Congxiang Zhu ◽  
Zhiqing Zhao

Biaxial compression-compression, biaxial tension-compression and compression-shear tests were carried out on self-compacting concrete (SCC) using the rock true triaxial machine and compression-shear hydraulic servo machine to explore the biaxial mechanical properties of SCC. The failure modes and stress-strain curves of SCC under different loading conditions were obtained through experiment. Based on the comparison with the biaxial loading test data of ordinary concrete, the following conclusions are drawn: the failure modes and failure mechanisms under biaxial compression-compression and biaxial tension-compression are similar between SCC and ordinary concrete. Under compression-shear loading, the oblique cracks formed on the lateral surface of the specimen parallel to the shear direction gradually increased and the friction marks on the shear failure section were gradually deepened with the increase of axial compression ratio. The development trend of the stress-strain curve in the principal stress direction was not related to the lateral stress. Under the influence of lateral compressive stress, the principal compressive stress of SCC was increased by 55.78% on average; under biaxial tension-compression, the principal tensile stress of SCC had a maximum reduction of 62.79%; and under the compression-shear action, the shear stress of SCC had a maximum increase of 3.35 times. Compared with the biaxial stress test data of ordinary concrete, it can be seen that the lateral compressive stress had a more significant effect on the principal stress of SCC under biaxial loading. Subsequently, the strength criterion equations of SCC under biaxial loading were proposed based on the principal stress space and octahedral space stress respectively, which have shown good applicability in practice.


2021 ◽  
Author(s):  
Fulufhelo Nemavhola ◽  
Thanyani Pandelani ◽  
Harry Ngwangwa

Heart failure remains one of the leading causes of death especially among people over the age of 60 years worldwide. To develop effective therapy and suitable replacement materials for the heart muscle it is necessary to understand its biomechanical behaviour under load. This paper investigates the passive mechanical response of the sheep myocardia excised from three different regions of the heart. Due to the relatively higher cost and huge ethical demands in acquisition and testing of real animal heart models, this paper evaluates the fitting performances of five different constitutive models on the myocardial tissue responses. Ten sheep were sacrificed, and their hearts excised and transported within 3h to the testing biomechanical laboratory. The upper sections of the hearts above the short axes were carefully dissected out. Tissues were dissected from the mid-sections of the left ventricle, mid-wall and right ventricle for each heart. The epicardia and endocardia were then carefully sliced off each tissue to leave the myocardia. Stress-strain curves were calculated, filtered and resampled. The results show that Choi-Vito model was found to provide the best fit to the LV, the polynomial (Anisotropic) model to RV, the Four-Fiber Family model to RV, Holzapfel (2000) to RV, Holzapfel (2005) to RV and the Fung model to LV.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Michael Nguyen‐Truong ◽  
Kevin M. Labus ◽  
Wenqiang Liu ◽  
Kirk McGilvray ◽  
Christian M. Puttlitz ◽  
...  

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Wenqiang Liu ◽  
Kevin M. Labus ◽  
Michael Nguyen‐Truong ◽  
Kirk McGilvray ◽  
Christian M. Puttlitz ◽  
...  

2018 ◽  
Vol 11 (8) ◽  
Author(s):  
Mara Terzini ◽  
Alessandra Aldieri ◽  
Elisabetta M Zanetti ◽  
Diana Massai ◽  
Alberto L Audenino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document