node protection
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 58 (6) ◽  
pp. 46-60
Author(s):  
O. Lemeshko ◽  
M. Yevdokymenko ◽  
O. Yeremenko ◽  
N. Kunicina ◽  
A. Ziravecka

Abstract In this paper, a tensor flow-based fast reroute model with multimedia quality protection is proposed. In the model, the conditions for implementing a multipath routing strategy and flow conservation are introduced taking into account possible packet loss at the network nodes and preventing overloading communication links both when using the primary and backup routes. At the same time, the novelty of the proposed solution is the formalization of the conditions of protection of the Quality of Experience level in terms of multimedia quality along the primary and backup routes. These conditions have been obtained during the tensor formalization of the network, which made it possible to calculate the quality of service indicators: packet loss probabilities, as well as the average end-to-end delay for audio and video flows transmitted in the multimedia session using the primary and backup routes, respectively. As a criterion for the optimality of the obtained solutions, a condition has been selected related to maximizing the overall performance of the infocommunication network. The results of the research of the proposed model confirm the adequacy of the numerical research results obtained for solving the problem of fast rerouting with link/node protection.


Author(s):  
Chengzong Peng ◽  
Danyang Zheng ◽  
Sumesh Philip ◽  
Xiaojun Cao
Keyword(s):  

Author(s):  
Dang Nan

In order to realize the power system defense security, this article puts forward the idea and method of constructing power dispatching automation systems with a cloud computing architecture and realizes the unified management of distributed resources with server virtualization technology. Real-time online migration of each module of the scheduling system is realized by using the in-memory data transfer technology. The multi-node network heartbeat detection technology is used to realize the complete monitoring of the server cluster. In the form of an independent disk array, the fault node is removed, and the service is restored automatically. The whole disaster reserve of the system is realized by means of remote resource mapping. System analysis results show that compared with traditional architecture, the service interruption probability of the new scheduling automation system is effectively reduced. Fault redundancy capacity in the station is increased from a key module 2 node to multi-node protection of all modules.


Dependability ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 34-39
Author(s):  
I. A. Tararychkin

The Aim of this paper is to evaluate the effect of transportation node protection on the resilience of pipeline systems to the development of damage by the mechanism of progressive blocking of nodes as well as the efficiency analysis of the employed protection measures. Damage to a point element of a system due to simultaneous transition into the down state of all the pipelines converging into it is called blocking. The process of progressive blocking of a transportation system’s nodes in a random order is considered to be progressive damage of a network structure. Progressive damage is a hazardous emergency development scenario that is associated with the disconnection of first some, then all end product consumers from the source. A system’s ability to resist progressive damage is estimated by the resilience indicator, the average share of the damaged nodes whose blocking in a random order causes the disconnection of all end product consumers from the source. Methods of research. A system’s indicator of resilience to progressive blocking of nodes was defined using computer simulation. The resilience indicator can only be used in comparative analysis of network structure properties if the analyzed systems are comparable. The condition of comparability of systems with protected point elements is the presence of equal numbers of disconnectable consumer nodes and damageable nodes. If the analyzed systems include protective peripheral clusters that represent interconnected sets of point elements, the following must be equal to enable the comparability of such systems: – number of peripheral clusters with two and more consumer nodes on condition of equal number of such nodes within each system; – most probable order of disconnection from the source of both individual consumers and peripheral clusters with equal numbers of end product consumers.Results. A system’s resilience to progressive blocking can be improved by means of managerial and technical measures of transportation node protection. It has been established that the highest efficiency of protection of individual point elements is achieved in case of protection of a consumer node located at the shortest possible distance from the source of the end product. It is demonstrated that the peripheral cluster for protection of a transportation system should be synthesized by including consumers situated at the minimal possible distance from the source node.Conclusions. The development of emergency situations by the mechanism of progressive blocking of nodes is a hazardous scenario of pipeline system damage. The resilience of a network structure to damage can be improved by means of measures of transportation system nodes protection. The highest efficiency of protection of individual point elements is achieved in case of protection of a consumer node located at the shortest possible distance from the source of the end product. The peripheral cluster for protection of a transportation system from progressive damage should be synthesized by including consumers situated at the minimal possible distance from the source node.


Dependability ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 34-39
Author(s):  
I. A. Tararychkin

The Aim of this paper is to evaluate the effect of transportation node protection on the resilience of pipeline systems to the development of damage by the mechanism of progressive blocking of nodes as well as the efficiency analysis of the employed protection measures. Damage to a point element of a system due to simultaneous transition into the down state of all the pipelines converging into it is called blocking. The process of progressive blocking of a transportation system’s nodes in a random order is considered to be progressive damage of a network structure. Progressive damage is a hazardous emergency development scenario that is associated with the disconnection of first some, then all end product consumers from the source. A system’s ability to resist progressive damage is estimated by the resilience indicator, the average share of the damaged nodes whose blocking in a random order causes the disconnection of all end product consumers from the source. Methods of research. A system’s indicator of resilience to progressive blocking of nodes was defined using computer simulation. The resilience indicator can only be used in comparative analysis of network structure properties if the analyzed systems are comparable. The condition of comparability of systems with protected point elements is the presence of equal numbers of disconnectable consumer nodes and damageable nodes. If the analyzed systems include protective peripheral clusters that represent interconnected sets of point elements, the following must be equal to enable the comparability of such systems: – number of peripheral clusters with two and more consumer nodes on condition of equal number of such nodes within each system; – most probable order of disconnection from the source of both individual consumers and peripheral clusters with equal numbers of end product consumers.Results. A system’s resilience to progressive blocking can be improved by means of managerial and technical measures of transportation node protection. It has been established that the highest efficiency of protection of individual point elements is achieved in case of protection of a consumer node located at the shortest possible distance from the source of the end product. It is demonstrated that the peripheral cluster for protection of a transportation system should be synthesized by including consumers situated at the minimal possible distance from the source node.Conclusions. The development of emergency situations by the mechanism of progressive blocking of nodes is a hazardous scenario of pipeline system damage. The resilience of a network structure to damage can be improved by means of measures of transportation system nodes protection. The highest efficiency of protection of individual point elements is achieved in case of protection of a consumer node located at the shortest possible distance from the source of the end product. The peripheral cluster for protection of a transportation system from progressive damage should be synthesized by including consumers situated at the minimal possible distance from the source node.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaojun Wu ◽  
Qiying Cao ◽  
Juan Jin ◽  
Yuanjie Li ◽  
Hong Zhang

The Narrowband Internet of Things (NB-IoT) is a main stream technology based on mobile communication system. The combination of NB-IoT and WSNs can active the application of WSNs. In order to evaluate the influence of node heterogeneity on malware propagation in NB-IoT based Heterogeneous Wireless Sensor Networks, we propose a node heterogeneity model based on node distribution and vulnerability differences, which can be used to analyze the availability of nodes. We then establish the node state transition model by epidemic theory and Markov chain. Further, we obtain the dynamic equations of the transition between nodes and the calculation formula of node availability. The simulation result is that when the degree of node is small and the node vulnerability function is a power function, the node availability is the highest; when the degree of node is large and the node vulnerability function satisfies the exponential function and the power function, the node availability is high. Therefore, when constructing a NBIOT-HWSNs network, node protection is implemented according to the degree of node, so that when the node vulnerability function satisfies the power function, all nodes can maintain high availability, thus making the entire network more stable.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 180064-180072
Author(s):  
Xiu'E Gao ◽  
Tianshu Zhang ◽  
Wenxue Xie ◽  
Bo Chen ◽  
Shifeng Chen

Sign in / Sign up

Export Citation Format

Share Document