lubricant layer
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bulat Munavirov ◽  
Jeffrey J. Black ◽  
Faiz Ullah Shah ◽  
Johan Leckner ◽  
Mark W. Rutland ◽  
...  

AbstractPhosphonium ionic liquids with orthoborate anions have been studied in terms of their interfacial film formation, both physisorbed and sacrificial from chemical breakdown, in sheared contacts of varying harshness. The halogen-free anion architecture was varied through (i) the heteronuclear ring size, (ii) the hybridisation of the constituent atoms, and (iii) the addition of aryl functionalities. Time of Flight-Secondary Ion Mass Spectrometry analysis revealed the extent of sacrificial tribofilm formation allowing the relative stability of the ionic liquids under tribological conditions to be determined and their breakdown mechanisms to be compared to simple thermal decomposition. Overall, ionic liquids outperformed reference oils as lubricants; in some cases, sacrificial films were formed (with anion breakdown a necessary precursor to phosphonium cation decomposition) while in other cases, a protective, self-assembly lubricant layer or hybrid film was formed. The salicylate-based anion was the most chemically stable and decomposed only slightly even under the harshest conditions. It was further found that surface topography influenced the degree of breakdown through enhanced material transport and replenishment. This work thus unveils the relationship between ionic liquid composition and structure, and the ensuing inter- and intra-molecular interactions and chemical stability, and demonstrates the intrinsic tuneability of an ionic liquid lubrication technology.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022021
Author(s):  
Elena Pinevich ◽  
Yuriy Lazarev ◽  
Nikolay Bolgarov ◽  
Dmitry Altynov ◽  
Yuri Fatyushin

Abstract The article deals with the search for rational and balanced solutions to ensure maximum safety of rolling stock movement, taking into account the minimization of costs and technical measures. The paper presents a mathematical model for calculating the effect of rheological characteristics of lubricants on the service life of heavy-loaded friction units of rolling stock. The scheme of interaction of a wheel with a rail at a single-point contact is presented in the form of contacts of two cylinders of infinite length. The results of numerical analysis of the found analytical dependences of the influence of the plasticity parameter on the coefficient of friction, the influence of the plasticity parameter on the supporting force created by the lubricant layer during the movement of surfaces are presented. The influence of the coefficient of friction on the safety of rolling stock movement in the curved sections of the track is established.


2021 ◽  
Vol 5 (2(61)) ◽  
pp. 26-32
Author(s):  
Sergii Sagin ◽  
Volodymyr Madey ◽  
Tymur Stoliaryk

The object of research is marine diesel engine oils, which provide lubrication, cooling and separation of friction surfaces. The subject of the research is the process of ensuring minimum mechanical losses in marine diesel engines. A problematic point in ensuring the lubrication of the cylinder-piston group and motion bearings is the lack of analytical and experimental studies that establish the relationship between the structural characteristics of engine oils and mechanical losses arising in marine internal combustion engines. The degree of orientational ordering of molecules and the thickness of the boundary lubricating layer are considered as the structural characteristics of engine oils. The determination of these values was carried out using the optical method based on the anisotropy of the light absorption coefficient by the boundary lubricant layer and the isotropic volume of the liquid (engine oil). The assessment of the level of mechanical losses arising in marine diesel engines was carried out according to an indirect indicator – the overshoot of the rotational speed and the time to reach the steady state of operation in the event of a change in load. It has been experimentally established that for engine oils used in marine internal combustion engines, the thickness of the boundary layer can be 15–17.5 µm. Motor oils, which are characterized by a higher ordering of molecules and a thickness of the boundary lubricant layer, ensure the flow of transient dynamic processes with less overshoot and a shorter transient time. This ensures the level of minimal mechanical losses occurring in marine diesel engines. The technology for determining the structural characteristics of engine oils can be used for any type and grade of oil (mineral or synthetic; high or low viscosity; used in both circulating and cylinder lubrication systems). The method of indirect assessment of mechanical losses of marine diesel engines can be used for any types of internal combustion engines of ships of sea and river transport (low-, medium- and high-speed; as well as performing the functions of both main and auxiliary engines).


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Steffen Hardt ◽  
Glen McHale

Liquid-infused surfaces (LISs) are composite solid–liquid surfaces with remarkable features such as liquid repellency, self-healing, and the suppression of fouling. This review focuses on the fluid mechanics on LISs, that is, the interaction of surfaces with a flow field and the behavior of drops on such surfaces. LISs can be characterized by an effective slip length that is closely related to their drag reduction property, which makes them suitable for several applications, especially for turbulent flows. Drag reduction, however, is compromised by failure mechanisms such as the drainage of lubricant from surface textures. The flow field can also sculpt the lubricant layer in a coupled self-organization process. For drops, the lubricant reduces drop pinning and increases drop mobility, but also results in a wetting ridge and the associated concept of an apparent contact angle. Design of LIS wettability and topography can induce low-friction drop motion, and drops can dynamically shape the lubricant ridges and film thickness. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Bulat Munavirov ◽  
Jeffrey J. Black ◽  
Faiz Ullah Shah ◽  
Johan Leckner ◽  
Mark W. Rutland ◽  
...  

Abstract Phosphonium ionic liquids with orthoborate anions have been studied in terms of their interfacial film formation, both physisorbed and sacrificial from chemical breakdown, in sheared contacts of varying harshness. The halogen-free anion architecture was varied through i) the heteronuclear ring size, ii) the hybridisation of the constituent atoms, and iii) the addition of aryl functionalities. ToF-SIMS analysis revealed the extent of sacrificial tribofilm formation allowing the relative stability of the ionic liquids under tribological conditions to be determined and their breakdown mechanisms to be compared to simple thermal decomposition. Overall, ionic liquids outperformed reference oils as lubricants; in some cases, sacrificial films were formed (with anion breakdown a necessary precursor to phosphonium cation decomposition) while in other cases, a protective, self-assembly lubricant layer or hybrid film was formed. The salicylate-based anion was the most chemically stable and decomposed only slightly even under the harshest conditions. It was further found that surface topography influenced the degree of breakdown through enhanced material transport and replenishment. This work thus unveils the relationship between ionic liquid composition and structure, and the ensuing inter- and intra-molecular interactions and chemical stability, and demonstrates the intrinsic tuneability of an ionic liquid lubrication technology.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3536
Author(s):  
Amit Patil ◽  
Ganesh Walunj ◽  
Furkan Ozdemir ◽  
Rajeev Kumar Gupta ◽  
Tushar Borkar

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) with exceptional mechanical, thermal, chemical, and electrical properties are enticing reinforcements for fabricating lightweight, high-strength, and wear-resistant metal matrix composites with superior mechanical and tribological performance. Nickel–carbon nanotube composite (Ni-CNT) and nickel–graphene nanoplatelet composite (Ni-GNP) were fabricated via mechanical milling followed by the spark plasma sintering (SPS) technique. The Ni-CNT/GNP composites with varying reinforcement concentrations (0.5, 2, and 5 wt%) were ball milled for twelve hours to explore the effect of reinforcement concentration and its dispersion in the nickel microstructure. The effect of varying CNT/GNP concentration on the microhardness and the tribological behavior was investigated and compared with SPS processed monolithic nickel. Ball-on-disc tribological tests were performed to determine the effect of different structural morphologies of CNTs and GNPs on the wear performance and coefficient of friction of these composites. Experimental results indicate considerable grain refinement and improvement in the microhardness of these composites after the addition of CNTs/GNPs in the nickel matrix. In addition, the CNTs and GNPs were effective in forming a lubricant layer, enhancing the wear resistance and lowering the coefficient of friction during the sliding wear test, in contrast to the pure nickel counterpart. Pure nickel demonstrated the highest CoF of ~0.9, Ni-0.5CNT and Ni-0.5GNP exhibited a CoF of ~0.8, whereas the lowest CoF of ~0.2 was observed for Ni-2CNT and Ni-5GNP composites. It was also observed that the uncertainty of wear resistance and CoF in both the CNT/GNP-reinforced composites increased when loaded with higher reinforcement concentrations. The wear surface was analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis to elucidate the wear mechanism in these composites.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 555
Author(s):  
Wei Liu ◽  
Xuehui Chen ◽  
Yunlong Jiao

A pitcher plant is a kind of liquid-infused porous surface that imparts an excellent directional manipulation ability to in-air droplets or underwater bubbles, so it has attracted researchers’ attention in both academic and industrial issues. In this work, a kind of liquid-infused anisotropic microgrooved slippery surface (LIAMSS) was fabricated through one-step femtosecond laser irradiation and lubricant coating technology. On the inclined LIAMSS, the underwater bubbles show great directional motion and anisotropic spreading ability under the effect of buoyancy. It should be noted that the interaction between the air and the lubricant layer plays a dominant role in determining the attachment and the movement of the underwater bubble, which could be ascribed to the competition between the adhesion resistance induced by contact angle hysteresis and the drive force induced by buoyancy. Additionally, the bubble shows obvious anisotropy on the LIAMSS with the increase in volume because of the restriction of the slippery area, and the bubble contact angle perpendicular to the grooved region is about 88○ when the bubble volume is 5 μL. We believe that the present findings would accelerate the application of this kind of bubble slippery surface in underwater gas collection and tail gas treatment.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 430
Author(s):  
Catharina van Heusden ◽  
Barbara R. Grubb ◽  
Brian Button ◽  
Eduardo R. Lazarowski

Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities, which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review the evidence leading to the identification of major components of these pathways: (a) the vesicular nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating, and MCC rates.


2021 ◽  
Vol 1 (48) ◽  
pp. 135-142
Author(s):  
Dmytrychenko M ◽  
◽  
Savchuk A ◽  
Hlukhonets A ◽  
◽  
...  

The article presents the results of research of the influence of the rolling speed parameter during pure rolling and 20% rolling with slip on the kinetics of formation of the lubricant layer thickness in the central contact zone. The aim of experimental research is establishing the impact of operational parameters of friction pairs - speed rolling (a pure rolling and 20% rolling with slip) the dynamics of the process of forming the lubricant layer thickness in the central contact zone between contacting surfaces experimental «steel ball - glass disc.» Oils of various operational purpose were used in the research work, namely motor oils for gasoline and diesel engines (М8Г2К, М10Г2К), universal motor oil (SAE15w40LUX) and universal motor­gear oils (ЄМТ-8, ЄМТ ПРОТЕК) (I-40). The increase in rolling speed was shifted from 0 to 1.8 m / s; at a volumetric temperature (об'ємній температурі) of oils 20°С; contact stress of 251.5 MPa. The thickness lubricating layer in contact was determined by optical interferometry. According to the results of experimental researches concerning determination of the lubricating action of oils in different composition and operational purpose, it was found that during the period of friction steam kinetics of the formation of the lubricant layer thickness depends on the rolling speed - with the increase of which there is an increase in the lubricant layer thickness in the central contact zone, leading to the establishment of appropriate lubrication modes (from boundary to hydrodynamic). Decisive role kinematic viscosity of the lubricant, which depends on the base of oils and quantitative content of the additives. Based on the experimental data obtained in conditions of the rolling with slip, favorable conditions for reducing the initial rolling speed by setting the maximum lubrication regime when using lubricant which contained surfactants with polar molecules. KEY WORDS: ELASTOHYDRODYNAMIC CHARACTERISTICS, ROLLING SPEED, CLEAN ROLLING, SUSPENSION ROLLING, THICKNESS OF THE LUBRICATION LAYER


Sign in / Sign up

Export Citation Format

Share Document