nucella ostrina
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Carrie L. Tyler ◽  
E.S. Stafford ◽  
L.R. Leighton

Crabs are thought to play a vital role in structuring gastropod populations. Studies quantifying the frequencies with which crabs attack gastropods in natural settings are, however, scarce. Although a wide variety of techniques exist with which predator–prey interactions can be investigated (e.g. laboratory experiments, exclusion caging, tethering and population surveys), there is a need for methods that can provide large amounts of quantitative data, particularly documenting the frequency with which crabs attack gastropods. This study examines the utility of using wax replicas of gastropods to determine crab attack frequencies. Replicas ofChlorostoma funebralis, Nucella ostrinaandNucella lamellosawere bolted to mesh screens and deployed in the rocky intertidal. Crabs attacked wax replicas of gastropods, leaving characteristic marks in the wax. In most cases, the appendage used in the attack could be identified from the marks (i.e. chelae vs walking legs). The effectiveness of this technique was verified using surveys of repair scar frequencies of the gastropod populations; patterns in attack frequency, determined from the number of marked wax replicas, were consistent with those of repair frequency, in that both were greater at the wave protected, quiet water locality. This study confirms the value of wax replicas in investigations of crab predation to determine the frequency and type of attack, and illustrates the potential of this method for quantifying predation intensity. The development of techniques that quantify the magnitude and exact nature of the effects of crab predation on intertidal communities is pivotal, given the intensity of commercial fishing of some species of crabs.


2014 ◽  
Vol 11 (92) ◽  
pp. 20131053 ◽  
Author(s):  
S. B. Crofts ◽  
A. P. Summers

Organisms that are durophagous, hard prey consumers, have a diversity of tooth forms. To determine why we see this variation, we tested whether some tooth forms break shells better than others. We measured the force needed with three series of aluminium tooth models, which varied in concavity and the morphology of a stress concentrating cusp, to break a shell. We created functionally identical copies of two intertidal snail shells: the thicker shelled Nucella ostrina and the more ornamented Nucella lamellosa using a three-dimensional printer. In this way, we reduced variation in material properties between test shells, allowing us to test only the interaction of the experimental teeth with the two shell morphologies. We found that for all tooth shapes, thicker shells are harder to break than the thinner shells and that increased ornamentation has no discernible effect. Our results show that for both shell morphologies, domed and flat teeth break shells better than cupped teeth, and teeth with tall or skinny cusps break shells best. While our results indicate that there is an ideal tooth form for shell breaking, we do not see this shape in nature. This suggests a probable trade-off between tooth function and the structural integrity of the tooth.


Ecology ◽  
2001 ◽  
Vol 82 (10) ◽  
pp. 2816 ◽  
Author(s):  
Elizabeth P. Dahlhoff ◽  
Bradley A. Buckley ◽  
Bruce A. Menge

Sign in / Sign up

Export Citation Format

Share Document