gustatory cortex
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 19)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Bradly Thomas Stone ◽  
Jian-You Lin ◽  
Abuzar Mahmood ◽  
Alden Joshua Sanford ◽  
Donald Katz

Gustatory Cortex (GC), a structure deeply involved in the making of consumption decisions, presumably performs this function by integrating information about taste, experiences, and internal states related to the animal’s health, such as illness. Here, we investigated this assertion, examining whether illness is represented in GC activity, and how this representation impacts taste responses and behavior. We recorded GC single-neuron activity and local field potentials (LFP) from healthy rats and (the same) rats made ill ( via LiCl injection). We show (consistent with the extant literature) that the onset of illness-related behaviors arises contemporaneously with alterations in spontaneous 7-12Hz LFP power at ~11 min following injection. This process was accompanied by reductions in single-neuron taste response magnitudes and discriminability, and with enhancements in palatability-relatedness – a result reflecting the collapse of responses toward a simple “good-bad” code arising in a specific subset of GC neurons. Overall, our data show that a state (illness) that profoundly reduces consumption changes basic properties of the sensory cortical response to tastes, in a manner that can easily explain illness’ impact on consumption.


2021 ◽  
Author(s):  
Ali Ataei ◽  
Arash Amini ◽  
Ali Ghazizadeh

Food choice is one of the most fundamental and most frequent value-based decisions for all animals including humans. However, the neural circuitry involved in food-based decisions is only recently being addressed. Given the relatively fast dynamics of decision formation, EEG-informed fMRI analysis is highly beneficial for localizing this circuitry in humans. Here by using the EEG correlates of evidence accumulation in a simultaneously recorded EEG-fMRI dataset, we found a significant role for the right temporal-parietal operculum (PO) and medial insula including gustatory cortex (GC) in binary choice between food items. These activations were uncovered by using the EEG energy (power 2) as the BOLD regressor and were missed if conventional analysis with the EEG signal itself were to be used, in agreement with theoretical predictions for EEG and BOLD relations. No significant positive correlations were found with higher powers of EEG (powers 3 or 4) pointing to specificity and sufficiency of EEG energy as the main correlate of the BOLD response. This finding extends the role of cortical areas traditionally involved in palatability processing to value-based decision making and offers the EEG energy as a key regressor of BOLD response in simultaneous EEG-fMRI designs.


2021 ◽  
Author(s):  
Du Zhang ◽  
Xiaoxiao Wang ◽  
Yanming Wang ◽  
Benedictor Alexander Nguchu ◽  
Zhoufang Jiang ◽  
...  

The topological representation is a fundamental property of human primary sensory cortices. The human gustatory cortex (GC) responds to the five basic tastes: bitter, salty, sweet, umami, and sour. However, the topological representation of the human gustatory cortex remains controversial. Through functional magnetic resonance imaging(fMRI) measurements of human responses to the five basic tastes, the current study aimed to delineate the taste representations within the GC. During the scanning, the volunteers tasted solutions of the five basic tastes, then washed their mouths with the tasteless solution. The solutions were then sucked from the volunteers' mouths, eliminating the action of swallowing. The results showed that the bilateral mid-insula activated most during the taste task, and the active areas were mainly in the precentral and central insular sulcus. However, the regions responding to the five basic tastes are substantially overlapped, and the analysis of contrasts between each taste response and the averaged response to the remaining tastes does not report any significant results. Furthermore, in the gustatory insular cortex, the multivariate pattern analysis (MVPA) was unable to distinguish the activation patterns of the basic tastes, suggesting the possibility of weakly clustered distribution of the taste-preference neural activities in the human insular cortex. In conclusion, the presented results suggest overlapping representations of the basic tastes in the human gustatory insular cortex.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jian-You Lin ◽  
Narendra Mukherjee ◽  
Max J Bernstein ◽  
Donald B Katz

Taste palatability is centrally involved in consumption decisions—we ingest foods that taste good and reject those that don't. Gustatory cortex (GC) and basolateral amygdala (BLA) almost certainly work together to mediate palatability-driven behavior, but the precise nature of their interplay during taste decision-making is still unknown. To probe this issue, we discretely perturbed (with optogenetics) activity in rats’ BLA→GC axons during taste deliveries. This perturbation strongly altered GC taste responses, but while the perturbation itself was tonic (2.5 s), the alterations were not—changes preferentially aligned with the onset times of previously-described taste response epochs, and reduced evidence of palatability-related activity in the ‘late-epoch’ of the responses without reducing the amount of taste identity information available in the ‘middle epoch.’ Finally, BLA→GC perturbations changed behavior-linked taste response dynamics themselves, distinctively diminishing the abruptness of ensemble transitions into the late epoch. These results suggest that BLA ‘organizes’ behavior-related GC taste dynamics.


2020 ◽  
Author(s):  
Jian-You Lin ◽  
Narendra Mukherjee ◽  
Max J. Bernstein ◽  
Donald B. Katz

ABSTRACTTaste palatability is centrally involved in consumption decisions—we ingest foods that taste good and reject those that don’t. Gustatory cortex (GC) and basolateral amygdala (BLA) almost certainly work together to mediate palatability-driven behavior, but the precise nature of their interplay during taste decision-making is still unknown. Here, we take a step toward filling this gap in our knowledge, by investigating the specific role that activity in the BLA→GC pathway plays in the emergence of palatability-related firing in GC response dynamics (which influence consumption decisions). We implanted electrode/optical-fiber probes in virally-prepared female Long-Evans rats, such that we could optogenetically hyperpolarize BLA→GC axons, perturbing activity in these axons without affecting BLA and GC somas, while recording GC neural responses to intra-oral presentations of a diverse taste battery. This inter-regional axonal perturbation strongly altered GC taste responses, but despite the laser illumination being tonic for the first 2s that the taste was on the tongue, the alterations were far from monolithic: rather than changing all moments of the response equally, or causing a simple exponential decay of changes, the perturbation was most strongly felt at the onset times of previously-described response epochs; furthermore, the effect was epoch-specific—perturbations had little impact on the amount of taste identity information in the “middle epoch” of the responses, but reduced evidence of palatability-related activity in the “late-epoch.” Finally, BLA→GC axon inhibition affected the nature of the epochal dynamics themselves, such that the normal abruptness of the behaviorally-relevant ensemble transitions into the palatability-related epoch was greatly diminished. These results suggest that BLA “organizes” behavior-related GC taste dynamics.


2020 ◽  
Vol 40 (50) ◽  
pp. 9676-9691
Author(s):  
Gulce Nazli Dikecligil ◽  
Dustin M. Graham ◽  
Il Memming Park ◽  
Alfredo Fontanini

2020 ◽  
Vol 598 (23) ◽  
pp. 5505-5522 ◽  
Author(s):  
Elor Arieli ◽  
Ron Gerbi ◽  
Mark Shein‐Idelson ◽  
Anan Moran

2020 ◽  
Vol 123 (5) ◽  
pp. 1995-2009 ◽  
Author(s):  
Cecilia G. Bouaichi ◽  
Roberto Vincis

Relatively little information is available on the neural dynamics of taste processing in the mouse gustatory cortex (GC). In this study we investigate how the GC encodes chemosensory and palatability features of a wide panel of gustatory stimuli when actively sampled through licking. Our results show that GC neurons broadly encode basic taste qualities but also process taste hedonics and licking information in a temporally dynamic manner.


2020 ◽  
Vol 30 (10) ◽  
pp. R444-R446
Author(s):  
Matthew P.H. Gardner ◽  
Geoffrey Schoenbaum

Sign in / Sign up

Export Citation Format

Share Document