phosphoinositide signaling
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 26)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Thiago Martins ◽  
Mariana Sponchiado ◽  
Felipe Alves Correa Carvalho Silva ◽  
Eliab Estrada-Cortés ◽  
Peter J. Hansen ◽  
...  

In cattle, starting 4-5 days after estrus, pre-implantation embryonic development occurs in the confinement of the uterine lumen. Cells in the endometrial epithelial layer control the molecular traffic to and from the lumen and, thereby determine luminal composition. Starting early post-estrus, endometrial function is regulated by sex-steroids, but the effects of progesterone on luminal cells transcription have not been measured in vivo. First objective was to determine the extent to which progesterone controls transcription in luminal epithelial cells 4 d (D4) after estrus. Second objective was to discover luminal transcripts that predict pregnancy outcomes, when the effect of progesterone is controlled. Endometrial luminal epithelial cells were collected from embryo transfer recipients on D4 using a cytological brush and their transcriptome determined by RNASeq. Pregnancy by embryo transfer was measured on D30 (25 pregnant and 18 non-pregnant). Progesterone concentration on D4 was associated positively (n= 182) and negatively (n= 58) with gene expression. Progesterone-modulated transcription indicated an increase in oxidative phosphorylation, biosynthetic activity and proliferation of epithelial cells. When these effects of progesterone were controlled, different genes affected positively (n= 22) and negatively (n= 292) odds of pregnancy. These set of genes indicated that a receptive uterine environment was characterized by the inhibition of phosphoinositide signaling and innate immune system responses. A panel of 25 genes predicted the pregnancy outcome with sensitivity and specificity ranging from 64-96% and 44-83%, respectively. In conclusion, in the early diestrus, both progesterone-dependent and -independent mechanisms regulate luminal epithelial transcription associated with pregnancy outcomes in cattle.


2021 ◽  
Vol 22 (23) ◽  
pp. 12825
Author(s):  
Elena G. Varlamova ◽  
Egor A. Turovsky ◽  
Valentina A. Babenko ◽  
Egor Y. Plotnikov

In recent years, much attention has been paid to the study of the therapeutic effect of the microelement selenium, its compounds, especially selenium nanoparticles, with a large number of works devoted to their anticancer effects. Studies proving the neuroprotective properties of selenium nanoparticles in various neurodegenerative diseases began to appear only in the last 5 years. Nevertheless, the mechanisms of the neuroprotective action of selenium nanoparticles under conditions of ischemia and reoxygenation remain unexplored, especially for intracellular Ca2+ signaling and neuroglial interactions. This work is devoted to the study of the cytoprotective mechanisms of selenium nanoparticles in the neuroglial networks of the cerebral cortex under conditions of ischemia/reoxygenation. It was shown for the first time that selenium nanoparticles dose-dependently induce the generation of Ca2+ signals selectively in astrocytes obtained from different parts of the brain. The generation of these Ca2+ signals by astrocytes occurs through the release of Ca2+ ions from the endoplasmic reticulum through the IP3 receptor upon activation of the phosphoinositide signaling pathway. An increase in the concentration of cytosolic Ca2+ in astrocytes leads to the opening of connexin Cx43 hemichannels and the release of ATP and lactate into the extracellular medium, which trigger paracrine activation of the astrocytic network through purinergic receptors. Incubation of cerebral cortex cells with selenium nanoparticles suppresses ischemia-induced increase in cytosolic Ca2+ and necrotic cell death. Activation of A2 reactive astrocytes exclusively after ischemia/reoxygenation, a decrease in the expression level of a number of proapoptotic and proinflammatory genes, an increase in lactate release by astrocytes, and suppression of the hyperexcitation of neuronal networks formed the basis of the cytoprotective effect of selenium nanoparticles in our studies.


2021 ◽  
Author(s):  
Hannes Maib ◽  
David H Murray

Polarized trafficking is necessary for the development of eukaryotes and is regulated by a conserved molecular machinery. Late steps of cargo delivery are mediated by the exocyst complex, which integrates lipid and protein components to tether vesicles for plasma membrane fusion. However, the molecular mechanisms of this process are poorly defined. Here, we reconstitute functional octameric human exocyst, demonstrating the basis for holocomplex coalescence and biochemically stable subcomplexes. We determine that each subcomplex independently binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is minimally sufficient for membrane tethering. Through reconstitution and epithelial cell biology experiments, we show that Arf6-mediated recruitment of the lipid kinase PIP5K1C rapidly converts phosphatidylinositol 4-phosphate (PI(4)P) to PI(4,5)P2, driving exocyst recruitment and membrane tethering. These results provide a molecular mechanism of exocyst-mediated tethering and a unique functional requirement for phosphoinositide signaling on late-stage vesicles in the vicinity of the plasma membrane.


Genetics ◽  
2021 ◽  
Author(s):  
Nairita Maitra ◽  
Staci Hammer ◽  
Clara Kjerfve ◽  
Vytas A Bankaitis ◽  
Michael Polymenis

Abstract Continuously dividing cells coordinate their growth and division. How fast cells grow in mass determines how fast they will multiply. Yet, there are few, if any, examples of a metabolic pathway that actively drives a cell cycle event instead of just being required for it. Here, we show that translational upregulation of lipogenic enzymes in Saccharomyces cerevisiae increased the abundance of lipids and promoted nuclear elongation and division. De-repressing translation of acetyl CoA carboxylase and fatty acid synthase also suppressed cell cycle-related phenotypes, including delayed nuclear division, associated with Sec14p phosphatidylinositol transfer protein deficiencies, and the irregular nuclear morphologies of mutants defective in phosphatidylinositol 4-OH kinase activities. Our results show that increased lipogenesis drives a critical cell cycle landmark and report a phosphoinositide signaling axis in control of nuclear division. The broad conservation of these lipid metabolic and signaling pathways raises the possibility these activities similarly govern nuclear division in other eukaryotes. In this report, the authors show that increasing lipid synthesis promotes the division of the nucleus in yeast cells, a model eukaryotic organism. They also implicate phosphoinositide signaling in the control of nuclear division. Because lipid metabolic and signaling pathways are highly conserved, it is possible that these activities also control nuclear division in other organisms. AUTHOR SUMMARY In this report, the authors show that increasing lipid synthesis promotes the division of the nucleus in yeast cells, a model eukaryotic organism. They also implicate phosphoinositide signaling in the control of nuclear division. Because lipid metabolic and signaling pathways are highly conserved, it is possible that these activities also control nuclear division in other organisms.


2021 ◽  
Vol 22 (15) ◽  
pp. 8095
Author(s):  
Egor A. Turovsky ◽  
Elena G. Varlamova ◽  
Maria V. Turovskaya

The aim of the study was to investigate the mechanisms of Ca2+ oscillation generation upon activation of connexin-43 and regulation of the lipolysis/lipogenesis balance in white adipocytes through vesicular ATP release. With fluorescence microscopy it was revealed that a decrease in the concentration of extracellular calcium ([Ca2+]ex) results in two types of Ca2+ responses in white adipocytes: Ca2+ oscillations and transient Ca2+ signals. It was found that activation of the connexin half-channels is involved in the generation of Ca2+ oscillations, since the blockers of the connexin hemichannels—carbenoxolone, octanol, proadifen and Gap26—as well as Cx43 gene knockdown led to complete suppression of these signals. The activation of Cx43 in response to the reduction of [Ca2+]ex was confirmed by TIRF microscopy. It was shown that in response to the activation of Cx43, ATP-containing vesicles were released from the adipocytes. This process was suppressed by knockdown of the Cx43 gene and by bafilomycin A1, an inhibitor of vacuolar ATPase. At the level of intracellular signaling, the generation of Ca2+ oscillations in white adipocytes in response to a decrease in [Ca2+]ex occurred due to the mobilization of the Ca2+ ions from the thapsigargin-sensitive Ca2+ pool of IP3R as a result of activation of the purinergic P2Y1 receptors and phosphoinositide signaling pathway. After activation of Cx43 and generation of the Ca2+ oscillations, changes in the expression levels of key genes and their encoding proteins involved in the regulation of lipolysis were observed in white adipocytes. This effect was accompanied by a decrease in the number of adipocytes containing lipid droplets, while inhibition or knockdown of Cx43 led to inhibition of lipolysis and accumulation of lipid droplets. In this study, we investigated the mechanism of Ca2+ oscillation generation in white adipocytes in response to a decrease in the concentration of Ca2+ ions in the external environment and established an interplay between periodic Ca2+ modes and the regulation of the lipolysis/lipogenesis balance.


2021 ◽  
Vol 22 (13) ◽  
pp. 6754
Author(s):  
Danish Khan ◽  
Aaron H. Nile ◽  
Ashutosh Tripathi ◽  
Vytas A. Bankaitis

The emergence of fungal “superbugs” resistant to the limited cohort of anti-fungal agents available to clinicians is eroding our ability to effectively treat infections by these virulent pathogens. As the threat of fungal infection is escalating worldwide, this dwindling response capacity is fueling concerns of impending global health emergencies. These developments underscore the urgent need for new classes of anti-fungal drugs and, therefore, the identification of new targets. Phosphoinositide signaling does not immediately appear to offer attractive targets due to its evolutionary conservation across the Eukaryota. However, recent evidence argues otherwise. Herein, we discuss the evidence identifying Sec14-like phosphatidylinositol transfer proteins (PITPs) as unexplored portals through which phosphoinositide signaling in virulent fungi can be chemically disrupted with exquisite selectivity. Recent identification of lead compounds that target fungal Sec14 proteins, derived from several distinct chemical scaffolds, reveals exciting inroads into the rational design of next generation Sec14 inhibitors. Development of appropriately refined next generation Sec14-directed inhibitors promises to expand the chemical weaponry available for deployment in the shifting field of engagement between fungal pathogens and their human hosts.


Author(s):  
Sarah E. Conduit ◽  
Elizabeth M. Davies ◽  
Alex J. Fulcher ◽  
Viola Oorschot ◽  
Christina A. Mitchell

Primary cilia are evolutionary conserved microtubule-based organelles that protrude from the surface of most mammalian cells. Phosphoinositides (PI) are membrane-associated signaling lipids that regulate numerous cellular events via the recruitment of lipid-binding effectors. The temporal and spatial membrane distribution of phosphoinositides is regulated by phosphoinositide kinases and phosphatases. Recently phosphoinositide signaling and turnover has been observed at primary cilia. However, the precise localization of the phosphoinositides to specific ciliary subdomains remains undefined. Here we use superresolution microscopy (2D stimulated emission depletion microscopy) to map phosphoinositide distribution at the cilia transition zone. PI(3,4,5)P3 and PI(4,5)P2 localized to distinct subregions of the transition zone in a ring-shape at the inner transition zone membrane. Interestingly, the PI(3,4,5)P3 subdomain was more distal within the transition zone relative to PtdIns(4,5)P2. The phosphoinositide effector kinase pAKT(S473) localized in close proximity to these phosphoinositides. The inositol polyphosphate 5-phosphatase, INPP5E, degrades transition zone phosphoinositides, however, studies of fixed cells have reported recombinant INPP5E localizes to the ciliary axoneme, distant from its substrates. Notably, here using live cell imaging and optimized fixation/permeabilization protocols INPP5E was found concentrated at the cilia base, in a distribution characteristic of the transition zone in a ring-shaped domain of similar dimensions to the phosphoinositides. Collectively, this superresolution map places the phosphoinositides in situ with the transition zone proteins and reveals that INPP5E also likely localizes to a subdomain of the transition zone membrane, where it is optimally situated to control local phosphoinositide metabolism.


2021 ◽  
Author(s):  
Mei Lin ◽  
Honghong Sun ◽  
Svetlana A. Fayngerts ◽  
Peiwei Huangyang ◽  
Youhai H. Chen

More than half of human tumors exhibit aberrantly dysregulated phosphoinositide signaling, yet how this is controlled remains not fully understood. While somatic mutations of PI3K, PTEN and Ras account for many cases of the hyperactivated lipid signals, other mechanisms for these dysfunctions in cancer are also being discovered. We report here that TNFAIP8 interacts with PtdIns(4,5)P2 and PtdIns(3,4,5)P3 and is likely to be hijacked by cancer cells to facilitate directional migration during malignant transformation. TNFAIP8 maintains the quiescent cellular state by sequestering inactive Rho GTPases in the cytosolic pool, which can be set free upon chemoattractant activation at the leading edge. Consequently, loss of TNFAIP8 results in severe defects of chemotaxis and adhesion. Thus, TNFAIP8, whose expression can be induced by inflammatory cytokines such as TNFα from tumor microenvironment, represents a molecular bridge from inflammation to cancer by linking NF-κB pathway to phosphoinositide signaling. Our study on the conserved hydrophobic cavity structure will also advise in silico drug screening and development of new TNFAIP8-based strategies to combat malignant human diseases.


2021 ◽  
Author(s):  
Nairita Maitra ◽  
Staci Hammer ◽  
Clara Kjerfve ◽  
Vytas A. Bankaitis ◽  
Michael Polymenis

ABSTRACTContinuously dividing cells coordinate their growth and division. How fast cells grow in mass determines how fast they will multiply. Yet, there are few, if any, examples of a metabolic pathway that actively drives a cell cycle event instead of just being required for it. Here, we show that translational upregulation of lipogenic enzymes in yeast increased the abundance of lipids and accelerated nuclear elongation and division. De-repressing translation of acetyl CoA carboxylase and fatty acid synthase also suppressed cell cycle-related phenotypes, including delayed nuclear division, associated with Sec14p phosphatidylinositol transfer protein deficiencies, and the irregular nuclear morphologies of mutants defective in phosphatidylinositol 4-OH kinase activities. Our results show that increased lipogenesis drives a critical cell cycle landmark and report a phosphoinositide signaling axis in control of nuclear division. The broad conservation of these lipid metabolic and signaling pathways raises the possibility these activities similarly govern nuclear division in mammals.


Sign in / Sign up

Export Citation Format

Share Document