quantum stochastic calculus
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
D. A. Dikko

In the framework of the Hudson–Parthasarathy quantum stochastic calculus, we employ a recent generalization of the Michael selection results in the present noncommutative settings to prove that the function space of the matrix elements of solutions to discontinuous quantum stochastic differential inclusion (DQSDI) is arcwise connected.



Author(s):  
Luigi Accardi ◽  
Yun-Gang Lu

We prove that, replacing the left Jordan–Wigner [Formula: see text]-embedding by the symmetric [Formula: see text]-embedding described in Sec. 2, the result of the corresponding central limit theorem changes drastically with respect to those obtained in Ref. 5. In fact, in the former case, for any [Formula: see text], the limit space is precisely the [Formula: see text]-mode Interacting Fock Space (IFS) that realizes the canonical quantum decomposition of the limit classical random variable. In the latter case, this happens if and only if [Formula: see text]. Furthermore, as shown in Sec. 4, the limit classical random variable turns out to coincide with the [Formula: see text]-mode version of the [Formula: see text]-deformed quantum Brownian introduced by Parthasarathy[Formula: see text], and extended to the general context of bi-algebras by Schürman[Formula: see text]. The last section of the paper (Appendix) describes this continuous version in white noise language, leading to a simplification of the original proofs, based on quantum stochastic calculus.



Author(s):  
Abdessatar Barhoumi ◽  
Bilel Kacem Ben Ammou ◽  
Hafedh Rguigui

By means of infinite-dimensional nuclear spaces, we generalize important results on the representation of the Weyl commutation relations. For this purpose, we construct a new nuclear Lie group generalizing the groups introduced by Parthasarathy [An Introduction to Quantum Stochastic Calculus (Birkhäuser, 1992)] and Gelfand–Vilenkin [Generalized Functions (Academic Press, 1964)] (see Ref. 15). Then we give an explicit construction of Weyl representations generated from a non-Fock representation. Moreover, we characterize all these Weyl representations in quantum white noise setting.



2016 ◽  
Vol 57 (2) ◽  
pp. 022702
Author(s):  
Un Cig Ji ◽  
Kalyan B. Sinha




Author(s):  
Tarek Hamdi

The additive monotone (respectively boolean) unitary Brownian motion is a non-commutative stochastic process with monotone (respectively boolean) independent and stationary increments which are distributed according to the arcsine law (respectively Bernoulli law). We introduce the monotone and boolean unitary Brownian motions and derive a closed formula for their associated moments. This provides a description of their spectral measures. We prove that, in the monotone case, the multiplicative analog of the arcsine distribution is absolutely continuous with respect to the Haar measure on the unit circle, whereas in the boolean case the multiplicative analog of the Bernoulli distribution is discrete. Finally, we use quantum stochastic calculus to provide a realization of these processes as the stochastic exponential of the correspending additive Brownian motions.



2015 ◽  
pp. 81-118
Author(s):  
Mou-Hsiung Chang


Sign in / Sign up

Export Citation Format

Share Document