canonical quantum
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 15)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Xinfei Li

This paper gives both a general canonical quantum gravity theory and the general canonical quantum gravity theories of the Universe and general black hole, and discovers the relations reflecting symmetric properties of the standard nonlinear gravitational Lagrangian, which are not relevant to any concrete metric models. This paper concretely shows the general commutation relations of the general gravitational field operators and their zeroth, first, second and third style, respectively, of high order canonical momentum operators for the general nonlinear system of the standard gravitational Lagrangian, and then has finished all the four styles of the canonical quantization of the standard gravity.


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Jonathan F. Schonfeld

AbstractIn a cloud chamber, the quantum measurement problem amounts to explaining the first droplet in a charged-particle track; subsequent droplets are explained by Mott’s 1929 wave-theoretic argument about collision-induced wavefunction collimation. I formulate a mechanism for how the first droplet in a cloud chamber track arises, making no reference to quantum measurement axioms. I look specifically at tracks of charged particles emitted in the simplest slow decays, because I can reason about rather than guess the form that wave packets take. The first visible droplet occurs when a randomly occurring, barely-subcritical vapor droplet is pushed past criticality by ionization triggered by the faint wavefunction of the emitted charged particle. This is possible because potential energy incurred when an ionized vapor molecule polarizes the other molecules in a droplet can balance the excitation energy needed for the emitted charged particle to create the ion in the first place. This degeneracy is a singular condition for Coulombic scattering, leading to infinite or near-infinite ionization cross sections, and from there to an emergent Born rule in position space, but not an operator projection as in the projection postulate. Analogous mechanisms may explain canonical quantum measurement behavior in detectors such as ionization chambers, proportional counters, photomultiplier tubes or bubble chambers. This work is important because attempts to understand canonical quantum measurement behavior and its limitations have become urgent in view of worldwide investment in quantum computing and in searches for super-rare processes (e.g., proton decay).


Author(s):  
K. Liegener ◽  
T. Thiemann

In a recent proposal we applied methods from constructive QFT to derive a Hamiltonian Renormalization Group in order to employ it ultimately for canonical quantum gravity. The proposal was successfully tested for free scalar fields and thus a natural next step is to test it for free gauge theories. This can be done in the framework of reduced phase space quantization which allows using techniques developed earlier for scalar field theories. In addition, in canonical quantum gravity one works in representations that support holonomy operators which are ill defined in the Fock representation of say Maxwell or Proca theory. Thus, we consider toy models that have both features, i.e. which employ Fock representations in which holonomy operators are well-defined. We adapt the coarse graining maps considered for scalar fields to those theories for free vector bosons. It turns out that the corresponding fixed pointed theories can be found analytically.


2020 ◽  
Vol 8 ◽  
Author(s):  
Thomas Thiemann

The canonical approach to quantum gravity has been put on a firm mathematical foundation in the recent decades. Even the quantum dynamics can be rigorously defined, however, due to the tremendously non-polynomial character of the gravitational interaction, the corresponding Wheeler–DeWitt operator-valued distribution suffers from quantisation ambiguities that need to be fixed. In a very recent series of works, we have employed methods from the constructive quantum field theory in order to address those ambiguities. Constructive QFT trades quantum fields for random variables and measures, thereby phrasing the theory in the language of quantum statistical physics. The connection to the canonical formulation is made via Osterwalder–Schrader reconstruction. It is well known in quantum statistics that the corresponding ambiguities in measures can be fixed using renormalisation. The associated renormalisation flow can thus be used to define a canonical renormalisation programme. The purpose of this article was to review and further develop these ideas and to put them into context with closely related earlier and parallel programmes.


2020 ◽  
pp. 160-192
Author(s):  
Dean Rickles

This chapter charts the early development of the canonical quantum gravity (that is, the quantization of the gravitational field in Hamiltonian form). What we find in this period include: the establishment of a procedure for quantizing in curved spaces; the first expressions for the Hamiltonian of general relativity; recognition of the existence and importance of constraints (i.e. the generators of infinitesimal coordinate transformations); a focus on the problem of observables (and the realisation of conceptual implications in defining these for generally relativistic theories), and a (template of a) method for quantizing the theory. Although it commenced relatively early, the canonical approach was slow in its subsequent development. This had two sources: (1) it required the introduction of tools and concepts from outside of quantum gravity proper (namely, the constraint machinery and the parameter formalism); (2) by its very nature, it is highly rigorous in a conceptual sense, demanding lots of groundwork to be established, in terms of the structure of physical observables, before the actual issue of quantization can even be considered. Work was further complicated by the fact that these two sources of difficulty happened to be entangled. Particular emphasis is placed on the parameter formalism of Paul Weiss.


2019 ◽  
Vol 64 (11) ◽  
pp. 1064 ◽  
Author(s):  
V. M. Simulik

The further approbation of the equation for the particles of arbitrary spin introduced recently in our papers is under consideration. The comparison with the known equations suggested by Bhabha, Pauli–Fierz, Bargmann–Wigner, Rarita–Schwinger (for spin s =3/2) and other authors is discussed. The advantages of the new equations are considered briefly. The advantage of the new equation is the absence of redundant components. The important partial case of spin s =2 is considered in details. The 10-component Dirac-like wave equation for the spin s =(2,2) particle-antiparticle doublet is suggested. The Poincar´e invariance is proved. The three-level consideration (relativistic canonical quantum mechanics, canonical Foldy–Wouthuysen-type field theory, and locally covariant field theory) is presented. The procedure of our synthesis of arbitrary spin covariant particle equations is demonstrated on the example of spin s =(2,2) doublet.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950291 ◽  
Author(s):  
W. S. Daza ◽  
J. E. Drut ◽  
C. L. Lin ◽  
C. R. Ordóñez

We analyze, from a canonical quantum field theory (QFT) perspective, the problem of one-dimensional particles with three-body attractive interactions, which was recently shown to exhibit a scale anomaly identical to that observed in two-dimensional (2D) systems with two-body interactions. We study in detail the properties of the scattering amplitude including both bound and scattering states, using cutoff and dimensional regularization, and clarify the connection between the scale anomaly derived from thermodynamics to the nonvanishing non-relativistic trace of the energy–momentum tensor.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
N. Auvray ◽  
B. Loret ◽  
S. Benhabib ◽  
M. Cazayous ◽  
R. D. Zhong ◽  
...  

AbstractEstablishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high superconducting temperatures. Yet, while solid evidences exist in several unconventional superconductors of ubiquitous critical fluctuations associated to a quantum critical point, in the cuprates they remain undetected until now. Here using symmetry-resolved electronic Raman scattering in the cuprate $${\mathrm{Bi}}_2{\mathrm{Sr}}_2{\mathrm{CaCu}}_2{\mathrm{O}}_{8+\delta}$$Bi2Sr2CaCu2O8+δ, we report the observation of enhanced electronic nematic fluctuations near the endpoint of the pseudogap phase. While our data hint at the possible presence of an incipient nematic quantum critical point, the doping dependence of the nematic fluctuations deviates significantly from a canonical quantum critical scenario. The observed nematic instability rather appears to be tied to the presence of a van Hove singularity in the band structure.


Sign in / Sign up

Export Citation Format

Share Document