dynamical correlation
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 19)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
Vol 154 (21) ◽  
pp. 211105
Author(s):  
James M. Callahan ◽  
Malte F. Lange ◽  
Timothy C. Berkelbach

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Zhimou Zhou ◽  
Shishir Kumar Pandey ◽  
Ji Feng

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Klaas Gunst ◽  
Dimitri Van Neck ◽  
Peter Andreas Limacher ◽  
Stijn De Baerdemacker

We employ tensor network methods for the study of the seniority quantum number – defined as the number of unpaired electrons in a many-body wave function – in molecular systems. Seniority-zero methods recently emerged as promising candidates to treat strong static correlations in molecular systems, but are prone to deficiencies related to dynamical correlation and dispersion. We systematically resolve these deficiencies by increasing the allowed seniority number using tensor network methods. In particular, we investigate the number of unpaired electrons needed to correctly describe the binding of the neon and nitrogen dimer and the \mathbf{D_{6h}}D6h symmetry of benzene.


2020 ◽  
Vol 8 ◽  
Author(s):  
J. Florencio ◽  
O. F. de Alcantara Bonfim

We review various theoretical methods that have been used in recent years to calculate dynamical correlation functions of many-body systems. Time-dependent correlation functions and their associated frequency spectral densities are the quantities of interest, for they play a central role in both the theoretical and experimental understanding of dynamic properties. In particular, dynamic correlation functions appear in the fluctuation-dissipation theorem, where the response of a many-body system to an external perturbation is given in terms of the relaxation function of the unperturbed system, provided the disturbance is small. The calculation of the relaxation function is rather difficult in most cases of interest, except for a few examples where exact analytic expressions are allowed. For most of systems of interest approximation schemes must be used. The method of recurrence relation has, at its foundation, the solution of Heisenberg equation of motion of an operator in a many-body interacting system. Insights have been gained from theorems that were discovered with that method. For instance, the absence of pure exponential behavior for the relaxation functions of any Hamiltonian system. The method of recurrence relations was used in quantum systems such as dense electron gas, transverse Ising model, Heisenberg model, XY model, Heisenberg model with Dzyaloshinskii-Moriya interactions, as well as classical harmonic oscillator chains. Effects of disorder were considered in some of those systems. In the cases where analytical solutions were not feasible, approximation schemes were used, but are highly model-dependent. Another important approach is the numericallly exact diagonalizaton method. It is used in finite-sized systems, which sometimes provides very reliable information of the dynamics at the infinite-size limit. In this work, we discuss the most relevant applications of the method of recurrence relations and numerical calculations based on exact diagonalizations. The method of recurrence relations relies on the solution to the coefficients of a continued fraction for the Laplace transformed relaxation function. The calculation of those coefficients becomes very involved and, only a few cases offer exact solution. We shall concentrate our efforts on the cases where extrapolation schemes must be used to obtain solutions for long times (or low frequency) regimes. We also cover numerical work based on the exact diagonalization of finite sized systems. The numerical work provides some thermodynamically exact results and identifies some difficulties intrinsic to the method of recurrence relations.


2020 ◽  
Author(s):  
Oinam Meitei ◽  
Shannon Houck ◽  
Nicholas Mayhall

We present a practical approach for computing the Breit-Pauli spin-orbit matrix elements of multiconfigurational systems with both spin and spatial degeneracies based on our recently developed RAS-nSF-IP/EA method (JCTC, 15,<br>2278, 2019). The spin-orbit matrix elements over all the multiplet components are computed using a single one-particle reduced density matrix as a result of the Wigner-Eckart theorem. A mean field spin-orbit approximation was used to account for the two-electron contributions. Basis set dependence as well as the effect of including additional excitations is presented. The effect of correlating the core and semi-core orbitals is also examined. Surprisingly accurate results are obtained for spin-orbit coupling constants, despite the fact that the efficient wavefunction approximations we explore neglect the bulk of dynamical correlation.<br>


Sign in / Sign up

Export Citation Format

Share Document