resonant tunnelling
Recently Published Documents


TOTAL DOCUMENTS

665
(FIVE YEARS 38)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Peter Hodgson ◽  
Dominic Lane ◽  
Peter Carrington ◽  
Evangelia Delli ◽  
Richard Beanland ◽  
...  

Abstract ULTRARAM™ is a non-volatile memory with the potential to achieve fast, ultra-low-energy electron storage in a floating gate accessed through a triple-barrier resonant tunnelling heterostructure. Here we report the implementation of ULTRARAM™ on a Si substrate; a vital step towards cost-effective mass production. Sample growth was carried out using molecular beam epitaxy, by first depositing an AlSb nucleation layer to seed the growth of a GaSb buffer layer, followed by the III-V memory epilayers. Fabricated single-cell memories show clear 0/1 logic-state contrast after ≤10-ms duration program/erase pulses of ~2.5 V, a remarkably fast switching speed for 10- and 20-µm devices. Furthermore, the combination of low voltage and small device capacitance per unit area results in a switching energy that is orders of magnitude lower than dynamic random access memory and flash, for a given cell size. Extended testing of the devices revealed retention in excess of 1000 years and degradation-free endurance of over 107 program/erase cycles, exceeding very recent results for similar devices on GaAs substrates.


Author(s):  
Pawan Kumar Srivastava ◽  
Yasir Hassan ◽  
Duarte J. P. de Sousa ◽  
Yisehak Gebredingle ◽  
Minwoong Joe ◽  
...  

2021 ◽  
Author(s):  
J. Webber ◽  
A. Oshiro ◽  
S. Iwamatsu ◽  
Y. Nishida ◽  
M. Fujita ◽  
...  

2021 ◽  
Author(s):  
Elnaz Rostampour

Abstract We theoretically express quantum transport at Dirac points via graphene quantum billiard as a non-magnetic material to connect metallic leads. Our results indicate that the quantum billiard of graphene is similar to a resonant tunnelling device. The centerpiece size and the Fermi energy of the graphene quantum billiard play an important role in the resonant tunnelling. In graphene, change of carrier density can affect plasmon polaritons. At the Dirac point, the conductivity of graphene depends on the geometry, so that the conduction of the evanescent modes is close to the theoretical value of 4e2/πh (where Planck's constant and the electron charge are denoted by h and e, respectively.). This transport property can be used to justify chaotic quantum systems and ballistic transistors. Our theoretical results demonstrate that the local density of state of the graphene sheet for EL = ER = 0 is larger than EL = ER = t (where EL (ER) is onsite energy of the left (right) metallic lead) unlike the current obtained from the calculations.


Sign in / Sign up

Export Citation Format

Share Document