organic anion transporters
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 34)

H-INDEX

57
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
pp. 394
Author(s):  
Srividya Ganapathy ◽  
Elisa R. Farrell ◽  
Simran Vaghela ◽  
Lucy Joshee ◽  
Earl G. Ford ◽  
...  

Mercury is a heavy metal toxicant that is prevalent throughout the environment. Organic forms of mercury, such as methylmercury (MeHg), can cross the placenta and can lead to lasting detrimental effects in the fetus. The toxicological effects of MeHg on the placenta itself have not been clearly defined. Therefore, the purpose of the current study was to assess the transport of MeHg into placental syncytiotrophoblasts and to characterize the mechanisms by which MeHg exerts its toxic effects. Cultured placental syncytiotrophoblasts (BeWo) were used for these studies. The transport of radioactive MeHg was measured to identify potential mechanisms involved in the uptake of this compound. The toxicological effects of MeHg on BeWo cells were determined by assessing visible pathological change, autophagy, mitochondrial viability, and oxidative stress. The findings of this study suggest that MeHg compounds are transported into BeWo cells primarily by sodium-independent amino acid carriers and organic anion transporters. The MeHg altered mitochondrial function and viability, decreased mitophagy and autophagy, and increased oxidative stress. Exposure to higher concentrations of MeHg inhibited the ability of cells to protect against MeHg-induced injury. The findings show that MeHg is directly toxic to syncytiotrophoblasts and may lead to disruptions in the fetal/maternal transfer of nutrients and wastes.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Camille André ◽  
Touria Mernissi ◽  
Gabriel Choukroun ◽  
Youssef Bennis ◽  
Saïd Kamel ◽  
...  

The renal elimination of uremic toxins (UTs) can be potentially altered by drugs that inhibit organic anion transporters 1/3 (OAT1/OAT3). The objective of the present study was to determine whether the prescription of at least one OAT1/OAT3 inhibitor was associated with the plasma accumulation of certain UTs in kidney transplant recipients. We included 403 kidney transplant recipients. For each patient, we recorded all prescription drugs known to inhibit OAT1/OAT3. Plasma levels of four UTs (trimethylamine N-oxide (TMAO), indole acetic acid (IAA), para-cresylsulfate (pCS), and indoxylsulfate (IxS) were assayed using liquid chromatography-tandem mass spectrometry. Plasma UT levels were significantly higher among patients prescribed at least one OAT inhibitor (n = 311) than among patients not prescribed any OAT inhibitors (n = 92). Multivariate analysis revealed that after adjustment for age, estimated glomerular filtration rate (eGFR), plasma level of albumin and time since transplantation, prescription of an OAT1/OAT3 inhibitor was independently associated with the plasma accumulation of pCS (adjusted odds ratio (95% confidence interval): 2.11 (1.26; 3.61]). Our results emphasize the importance of understanding the interactions between drugs and UTs and those involving UT transporters in particular.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jerome Lowenstein ◽  
Sanjay K. Nigam

Many putative uremic toxins—like indoxyl sulfate, p-cresol sulfate, kynurenic acid, uric acid, and CMPF—are organic anions. Both inter-organ and inter-organismal communication are involved. For example, the gut microbiome is the main source of indole, which, after modification by liver drug metabolizing enzymes (DMEs), becomes indoxyl sulfate. Various organic anion transporters (organic anion transporters, OATs; organic anion-transporting polypeptides, OATPs; multidrug resistance-associated proteins, MRPs, and other ABC transporters like ABCG2)—often termed “drug transporters”—mediate movement of uremic toxins through cells and organs. In the kidney proximal tubule, critical roles for OAT1 and OAT3 in regulating levels of protein-bound uremic toxins have been established using knock-out mice. OATs are important in maintaining residual tubular function in chronic kidney disease (CKD); as CKD progresses, intestinal transporters like ABCG2, which extrude urate and other organic anions into the gut lumen, seem to help restore homeostasis. Uremic toxins like indoxyl sulfate also regulate signaling and metabolism, potentially affecting gene expression in extra-renal tissues as well as the kidney. Focusing on the history and evolving story of indoxyl sulfate, we discuss how uremic toxins appear to be part of an extensive “remote sensing and signaling” network—involving so-called drug transporters and drug metabolizing enzymes which modulate metabolism and signaling. This systems biology view of uremic toxins is leading to a new appreciation of uremia as partly due to disordered remote sensing and signaling mechanisms–resulting from, and causing, aberrant inter-organ (e.g., gut-liver- kidney-CNS) and inter-organismal (e.g., gut microbiome-host) communication.


2021 ◽  
pp. JPET-AR-2020-000449
Author(s):  
Michele Leuenberger ◽  
Stephanie Häusler ◽  
Vera Höhn ◽  
Adriana Euler ◽  
Bruno Stieger ◽  
...  

ACS Omega ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 4347-4354
Author(s):  
Tatsuya Kawasaki ◽  
Masaki Kondo ◽  
Rioka Hiramatsu ◽  
Tomohiro Nabekura

2021 ◽  
Vol 217 ◽  
pp. 107647
Author(s):  
Jinghui Zhang ◽  
Haoxun Wang ◽  
Yunzhou Fan ◽  
Zhou Yu ◽  
Guofeng You

2021 ◽  
Vol 110 (1) ◽  
pp. 347-353
Author(s):  
Ling Zou ◽  
Pär Matsson ◽  
Adrian Stecula ◽  
Huy X. Ngo ◽  
Arik A. Zur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document