recoilless fraction
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 2)

H-INDEX

12
(FIVE YEARS 0)

MRS Advances ◽  
2019 ◽  
Vol 4 (25-26) ◽  
pp. 1449-1455
Author(s):  
Monica Sorescu ◽  
Kevin Byerly

ABSTRACTAmorphous alloy Fe68.5Co5Nb3Cu1Si15.5B7 was obtained by melt spinning. Samples cut from the foil were annealed at 450, 550, 650 and 750 °C in a vacuum furnace. 57Fe Mӧssbauer spectroscopy was used to identify the crystalline phases formed and the orientation of the magnetic moments based on the refined values of the hyperfine parameters. The spectra of the samples annealed at 550, 650 and 750 °C were indicative of nanocrystallization, with the magnetic moments reoriented out-of-plane for the last sample. This behavior is in contradistinction to that of the Co-rich system, which was totally crystallized at these annealing temperatures. Our results show that small Co additions can lead to the formation of nanostructures over a whole range of annealing temperatures. A new series of Mӧssbauer spectra was obtained by recording simultaneously the intensity transmitted by a superposition of the sample with the stainless steel etalon, based on the dual absorber method previously introduced by us. The values of the recoilless fraction could be derived from the relative spectral areas. The f factor maintained values close to 0.7 for all samples measured, but dropped to 0.37 for the sample annealed at 750 °C. This behavior could be related to the presence of elastic stresses in the system, which caused the out-of-plane reorientation of the magnetic moment directions.


MRS Advances ◽  
2018 ◽  
Vol 4 (3-4) ◽  
pp. 155-162
Author(s):  
Monica Sorescu ◽  
Mark Allwes

ABSTRACTEquimolar mixtures of graphene and iron oxide nanoparticles were subjected to mechanochemical activation. The phase sequence was investigated using Mӧssbauer spectroscopy as function of ball milling time. For low milling times (2-4 hours) the series with hematite (Fe2O3) nanoparticles was fitted with 2 sextets, corresponding to hematite with carbon introduced in the lattice. At high milling times (8-12 hours) the same series exhibited an additional sextet with hyperfine parameters characteristic to iron carbides and a quadrupole-split doublet, which could be assigned to carbon clusters with small amounts of iron in them. The series with magnetite nanoparticles (Fe3O4) at low milling times was analyzed considering 2 sextets, corresponding to the tetrahedral and octahedral sites of magnetite. At high milling times, the magnetite series also exhibited a broad sextet representing iron carbides and the doublet associated with iron-containing carbon clusters. Supporting information was obtained by determinations of the recoilless fraction. The results were compared with those obtained by ball milling graphite with hematite and magnetite nanoparticles.


MRS Advances ◽  
2017 ◽  
Vol 2 (27) ◽  
pp. 1435-1440 ◽  
Author(s):  
Monica Sorescu ◽  
Julia Limongelli ◽  
Christopher Stroh ◽  
Kevin Byerly

ABSTRACTAmorphous ferromagnetic alloy with the composition Fe56Co24Nb4B13Si2Cu1 was obtained by rapid quenching from the melt. Samples cut from the ribbons were annealed at 450, 550, 650 and 750 °C in a vacuum furnace. 57Fe Mössbauer spectroscopy was used to identify the phases formed based on the refined values of the hyperfine parameters. The as-quenched specimen was analyzed with a hyperfine magnetic field distribution and corresponded to an in-plane orientation of the magnetic moment directions. The sample annealed at 450 °C was found to be in a nanocrystalline state due to observation of the (FeCo)-Si alloy with the DO3 structure. The balance of the composition was represented by a metalloid-enriched amorphous grain boundary phase. In contradistinction to this, the samples annealed at 550-750 °C were totally crystallized and the new phases formed were α-(FeCo), (FeCo)2(BSi) and (FeCo)3(BSi). These findings suggest that nanocrystallization is obtained only at select processing temperatures. A new set of Mössbauer spectra was obtained by recording simultaneously the intensity transmitted by a sandwich of the sample with the stainless steel etalon, based on the dual absorber method recently introduced by us. The values of the recoilless fraction can be derived from the relative spectral areas. The f factor value dropped from 0.6 to 0.37 for the sample annealed at 450 °C, consistent with the onset of nanocrystallization in the system. For the completely crystallized specimens, the f factor maintained values close to 0.5. This indicates that the presence of quenched-in stresses may play a role in the ability of samples to undergo recoilless emission and absorption of gamma rays.


MRS Advances ◽  
2015 ◽  
Vol 1 (3) ◽  
pp. 221-226
Author(s):  
Monica Sorescu ◽  
Richard Trotta

ABSTRACTGraphite-doped hematite and magnetite nanoparticles systems (∼50 nm) were prepared by mechanochemical activation for milling times ranging from 2 to 12 hours. Their structural and magnetic properties were studied by 57Fe Mössbauer spectroscopy. The spectra corresponding to the hematite milled samples were analyzed by considering two sextets, corresponding to the incorporation of carbon atoms into the iron oxide structure. For ball milling time of 12 hours a quadrupole split doublet has been added, representing the contribution of ultrafine particles. The Mössbauer spectra of graphite-doped magnetite were resolved considering a sextet and a magnetic hyperfine field distribution, corresponding to the tetrahedral and octahedral sublattices of magnetite, respectively. A quadrupole split doublet was incorporated in the fitting of the 12-hour milled sample. The recoilless fraction for all samples was determined using our previously developed dual absorber method. It was found that the recoilless fraction of the graphite-doped hematite nanoparticles decreases as function of ball milling time. The f factor of graphite-containing magnetite nanoparticles for the tetrahedral sites stays constant, while that of the octahedral sublattice decreases as function of ball milling time. These findings reinforce the idea that carbon atoms exhibit preference for the octahedral sites of magnetite.


2014 ◽  
Vol 1655 ◽  
Author(s):  
Monica Sorescu ◽  
Tianhong Xu ◽  
Lucian Diamandescu

ABSTRACTMost recently, magnetic ceramic nanoparticles have attracted considerable scientific interest from the basic research point of view and for their prospective use in chemical sensing, catalysis and electrochemical applications. In this paper we report the successful synthesis of xSnO2-(1-x)α-Fe2O3 system by hydrothermal synthesis and that of xZrO2-(1-x)α-Fe2O3 system by mechanochemical activation. The two nanoparticle systems were analyzed side-by-side using X-ray diffraction (XRD) and Mössbauer spectroscopy. The latter technique was used in its complexity, including the determination of the recoilless fraction using our dual absorber method. This was correlated with the onset of new phases in the systems of interest.


2012 ◽  
Vol 1520 ◽  
Author(s):  
Monica Sorescu ◽  
Tianhong Xu ◽  
Steven Herchko

ABSTRACTDifferential scanning calorimetry, X-ray diffraction, and room temperature Mössbauer spectrum measurements of Fe73.5Cu1Nb3Si13.5B9 (Finemet) alloy have been carried out in order to study its structural and magnetic properties as a function of annealing temperature. The Mössbauer spectra of annealed Finemet alloy could be fitted with 4 or 5 sextets and one doublet at higher annealing temperatures, revealing the appearance of different crystalline phases corresponding to the different Fe sites above the crystallization temperature. The appearance of the nanocrystalline phases at different annealing temperatures was further confirmed by the recoilless fraction measurements. These made use of our recently-developed dual absorber method, which made it possible to determine precisely the recoilless fractions of the amorphous, nanocrystalline and grain boundary phases separately.


Sign in / Sign up

Export Citation Format

Share Document