small water bodies
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 44)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 14 (1) ◽  
pp. 229
Author(s):  
Jiarui Shi ◽  
Qian Shen ◽  
Yue Yao ◽  
Junsheng Li ◽  
Fu Chen ◽  
...  

Chlorophyll-a concentrations in water bodies are one of the most important environmental evaluation indicators in monitoring the water environment. Small water bodies include headwater streams, springs, ditches, flushes, small lakes, and ponds, which represent important freshwater resources. However, the relatively narrow and fragmented nature of small water bodies makes it difficult to monitor chlorophyll-a via medium-resolution remote sensing. In the present study, we first fused Gaofen-6 (a new Chinese satellite) images to obtain 2 m resolution images with 8 bands, which was approved as a good data source for Chlorophyll-a monitoring in small water bodies as Sentinel-2. Further, we compared five semi-empirical and four machine learning models to estimate chlorophyll-a concentrations via simulated reflectance using fused Gaofen-6 and Sentinel-2 spectral response function. The results showed that the extreme gradient boosting tree model (one of the machine learning models) is the most accurate. The mean relative error (MRE) was 9.03%, and the root-mean-square error (RMSE) was 4.5 mg/m3 for the Sentinel-2 sensor, while for the fused Gaofen-6 image, MRE was 6.73%, and RMSE was 3.26 mg/m3. Thus, both fused Gaofen-6 and Sentinel-2 could estimate the chlorophyll-a concentrations in small water bodies. Since the fused Gaofen-6 exhibited a higher spatial resolution and Sentinel-2 exhibited a higher temporal resolution.


2022 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Lingjun Wang ◽  
Wanjuan Bie ◽  
Haocheng Li ◽  
Tanghong Liao ◽  
Xingxing Ding ◽  
...  

Small water bodies ranging in size from 1 to 50,000 m2, are numerous, widely distributed, and have various functions in water storage, agriculture, and fisheries. Small water bodies used for agriculture and fisheries are economically significant in China, hence it is important to properly identify and analyze them. In remote sensing technology, water body identification based on band analysis, image classification, and water indices are often designed for large, homogenous water bodies. Traditional water indices are often less accurate for small water bodies, which often contain submerged or floating plants or easily confused with hill shade. Water quality inversion commonly depends on establishing the relationship between the concentration of water constituents and the observed spectral reflectance. However, individual variation in water quality in small water bodies is enormous and often far beyond the range of existing water quality inversion models. In this study, we propose a method for small water body identification and water quality estimation and test its applicability in Wuhan. The kappa coefficient of small water body identification is over 0.95, and the coefficient of determination of the water quality inversion model is over 0.9. Our results show that the method proposed in this study can be employed to accurately monitor the dynamics of small water bodies. Due to the outbreak of the COVID-19 pandemic, the intensity of human activities decreased. As a response, significant changes in the water quality of small water bodies were observed. The results also suggest that the water quality of small water bodies under different production modes (intensive/casual) respond differently in spatial and temporal dimensions to the decrease in human activities. These results illustrate that effective remote sensing monitoring of small water bodies can provide valuable information on water quality.


Author(s):  
Christopher Mulanda Aura ◽  
Ruth Lewo Mwarabu ◽  
Chrisphine S. Nyamweya ◽  
Horace Owiti ◽  
Collins Onyango Ongore ◽  
...  

2021 ◽  
Vol 13 (24) ◽  
pp. 5176
Author(s):  
Vinicius Perin ◽  
Samapriya Roy ◽  
Joe Kington ◽  
Thomas Harris ◽  
Mirela G. Tulbure ◽  
...  

Basemap and Planet Fusion—derived from PlanetScope imagery—represent the next generation of analysis ready datasets that minimize the effects of the presence of clouds. These datasets have high spatial (3 m) and temporal (daily) resolution, which provides an unprecedented opportunity to improve the monitoring of on-farm reservoirs (OFRs)—small water bodies that store freshwater and play important role in surface hydrology and global irrigation activities. In this study, we assessed the usefulness of both datasets to monitor sub-weekly surface area changes of 340 OFRs in eastern Arkansas, USA, and we evaluated the datasets main differences when used to monitor OFRs. When comparing the OFRs surface area derived from Basemap and Planet Fusion to an independent validation dataset, both datasets had high agreement (r2 ≥ 0.87), and small uncertainties, with a mean absolute percent error (MAPE) between 7.05% and 10.08%. Pairwise surface area comparisons between the two datasets and the PlanetScope imagery showed that 61% of the OFRs had r2 ≥ 0.55, and 70% of the OFRs had MAPE <5%. In general, both datasets can be employed to monitor OFRs sub-weekly surface area changes, and Basemap had higher surface area variability and was more susceptible to the presence of cloud shadows and haze when compared to Planet Fusion, which had a smoother time series with less variability and fewer abrupt changes throughout the year. The uncertainties in surface area classification decreased as the OFRs increased in size. In addition, the surface area time series can have high variability, depending on the OFR environmental conditions (e.g., presence of vegetation inside the OFR). Our findings suggest that both datasets can be used to monitor OFRs sub-weekly, seasonal, and inter-annual surface area changes; therefore, these datasets can help improve freshwater management by allowing better assessment and management of the OFRs.


2021 ◽  
pp. 73-91
Author(s):  
Dubravka Čerba ◽  
Ladislav Hamerlík

2021 ◽  
pp. 437-451
Author(s):  
Vladimir Pešić ◽  
Marko Miliša ◽  
Đurađ Milošević

2021 ◽  
pp. 251-270
Author(s):  
Nikola Marinković ◽  
Momir Paunović ◽  
Maja Raković ◽  
Milica Jovanović ◽  
Vladimir Pešić

2021 ◽  
pp. 351-387
Author(s):  
Jelka Crnobrnja-Isailović ◽  
Avdul Adrović ◽  
Ferdinand Bego ◽  
Natalija Čađenović ◽  
Elvira Hadžiahmetović Jurida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document