aspect sensitivity
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 2)

H-INDEX

18
(FIVE YEARS 0)

2019 ◽  
Vol 16 (2) ◽  
pp. 211-215
Author(s):  
Haiyin Qing ◽  
Zhengyu Zhao ◽  
Yaohui Xu ◽  
Chen Zhou
Keyword(s):  

2014 ◽  
Vol 7 (9) ◽  
pp. 3113-3126 ◽  
Author(s):  
C. F. Lee ◽  
G. Vaughan ◽  
D. A. Hooper

Abstract. This study quantifies the uncertainties in winds measured by the Aberystwyth Mesosphere–Stratosphere–Troposphere (MST) radar (52.4° N, 4.0° W), before and after its renovation in March 2011. A total of 127 radiosondes provide an independent measure of winds. Differences between radiosonde and radar-measured horizontal winds are correlated with long-term averages of vertical velocities, suggesting an influence from local mountain waves. These local influences are an important consideration when using radar winds as a measure of regional conditions, particularly for numerical weather prediction. For those applications, local effects represent a source of sampling error additional to the inherent uncertainties in the measurements themselves. The radar renovation improved the signal-to-noise ratio (SNR) of measurements, with a corresponding improvement in altitude coverage. It also corrected an underestimate of horizontal wind speeds attributed to beam formation problems, due to pre-renovation component failure. The root mean square error (RMSE) in radar-measured horizontal wind components, averaged over half an hour, increases with wind speed and altitude, and is 0.8–2.5 m s−1 (6–12% of wind speed) for post-renovation winds. Pre-renovation values are typically 0.1 m s−1 larger. The RMSE in radial velocities is <0.04 m s−1. Eight weeks of special radar operation are used to investigate the effects of echo power aspect sensitivity. Corrections for echo power aspect sensitivity remove an underestimate of horizontal wind speeds; however aspect sensitivity is azimuthally anisotropic at the scale of routine observations (≈1 h). This anisotropy introduces random error into wind profiles. For winds averaged over half an hour, the RMSE is around 3.5% above 8 km, but as large as 4.5% in the mid-troposphere.


2014 ◽  
Vol 7 (5) ◽  
pp. 4589-4621
Author(s):  
C. F. Lee ◽  
G. Vaughan ◽  
D. A. Hooper

Abstract. This study quantifies the uncertainties in winds measured by the Aberystwyth Mesosphere-Stratosphere-Troposphere (MST) radar (52.4° N, 4.0° W), before and after its renovation in March 2011. 127 radiosondes provide an independent measure of winds. Differences between radiosonde and radar-measured horizontal winds are correlated with long-term averages of vertical velocities, suggesting an influence from local mountain waves. These local influences are an important consideration when using radar winds as a measure of regional conditions, particularly for numerical weather prediction. In those applications, local effects represent a source of sampling error additional to the inherent uncertainties in the measurements themselves. The radar renovation improved the SNR of measurements, with correspondingly improved altitude coverage. It also corrected an under-estimate of horizontal wind speeds attributed to beam formation problems, due to component failure pre-renovation. The standard error in radar-measured winds averaged over half-an-hour increases with wind speed and altitude, and is 0.6–2.5 m s−1 (5–20% of wind speed) for post-renovation horizontal winds. Pre-renovation values are typically 0.4 m s−1 (0.03 m s−1) larger. The standard error in radial velocities is < 0.04 m s−1. Eight weeks of special radar operation are used to investigate the effects of echo power aspect sensitivity. Corrections for echo power aspect sensitivity remove an underestimate of horizontal wind speeds, however aspect sensitivity is azimuthally anisotropic at the scale of routine observations (≈ 1 h). This anisotropy introduces additional random error into wind profiles. For winds averaged over half-an-hour, the random error is around 3.5% above 8 km, but as large as 4.5% in the mid-troposphere.


2014 ◽  
Vol 119 (2) ◽  
pp. 1233-1249 ◽  
Author(s):  
H. Bahcivan ◽  
J. W. Cutler ◽  
J. C. Springmann ◽  
R. Doe ◽  
M. J. Nicolls
Keyword(s):  

2013 ◽  
Vol 30 (2) ◽  
pp. 245-259 ◽  
Author(s):  
Jenn-Shyong Chen ◽  
Jun-ichi Furumoto

Abstract The aspect angle, a measurement of the aspect sensitivity of atmospheric refractivity irregularities, was estimated with multiple-receiver coherent radar imaging (CRI) of very high frequency (VHF) atmospheric radar. Two CRI parameters retrieved by Capon’s method were utilized to derive the aspect angle: brightness width from the vertical radar beam and the direction of arrival (DOA) of the echo center from the oblique radar beam. Differing from previous studies with CRI, the radar beam weighting effect on the CRI brightness distribution was considered, and moreover, the radar beamwidth used in study was adaptive to the signal-to-noise ratio (SNR) of data as well as the off-beam direction angle. The study is based on statistical results. It is shown that the brightness width, a representative of the aspect angle, obtained from the modified CRI brightness distribution of the vertical radar beam was generally larger than that without correction, and it was very close to the values derived from the DOA of the 1° oblique radar beam and the power distribution of multiple beam directions. Moreover, the aspect angle derived from the DOA varied with the radar beam direction, which was similar to that obtained from the comparison of echo powers of a radar beam pair; however, the DOA approach yielded a much larger aspect angle in the low-SNR condition. This study recommended a feasibility of improving the measurements of atmospheric parameters with CRI after removing the radar beam weighting effect suitably from the CRI brightness distribution.


2012 ◽  
Vol 30 (3) ◽  
pp. 457-465 ◽  
Author(s):  
M. Smirnova ◽  
E. Belova ◽  
S. Kirkwood

Abstract. Aspect sensitivities of polar mesosphere summer echoes (PMSE) measured with the ESRAD 50 MHz radar in 1997–2010 are studied using the full correlation analysis technique. Half of PMSE detected each year are found to be highly aspect sensitive. Yearly median values of the aspect sensitivity parameter θs, characterising the half-width of the scatterers' polar diagram, are 2.9–3.7° depending on the year. The other half of the PMSE have θs values larger than 9–11° and cannot be evaluated using the ESRAD vertical beam only. PMSE aspect sensitivity reveals an altitude dependence, namely, the scatter becomes more isotropic with increasing height. This result is consistent with that reported in other studies. No dependence of PMSE aspect sensitivity on backscattered power for any year was identified. In the paper the limitations of the in-beam and off-vertical beam methods for estimation of PMSE aspect sensitivity are discussed. We conclude that both methods should be combined in order to get complete information about PMSE aspect sensitivity and to estimate correctly PMSE absolute strength.


2011 ◽  
Vol 116 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
D. L. Hysell ◽  
R. B. Hedden ◽  
W. E. Swartz ◽  
D. T. Farley ◽  
J. L. Chau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document