mountain waves
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 63)

H-INDEX

35
(FIVE YEARS 5)

Abstract Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave- (MW) resolving hind-casts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. TheWeather Research and Forecasting (WRF) model and the Met Office Unified Model (UM) were both configured with a Δx = 3 km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric InfraRed Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3 km resolution, small-scale MWs are under-resolved and/or over-diffused. MWdrag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈ 6 time smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e. ) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.


2022 ◽  
Vol 74 (1) ◽  
Author(s):  
Satoshi Ishii ◽  
Yoshihiro Tomikawa ◽  
Masahiro Okuda ◽  
Hidehiko Suzuki

AbstractImaging observations of OH airglow were performed at Meiji University, Japan (35.6° N, 139.5° E), from May 2018 to December 2019. Mountainous areas are located to the west of the imager, and westerly winds are dominant in the lower atmosphere throughout the year. Mountain waves (MWs) are generated and occasionally propagate to the upper atmosphere. However, only four likely MW events were identified, which are considerably fewer than expected. There are two possible reasons for the low incidence: (1) MWs do not propagate easily to the upper mesosphere due to background wind conditions, and/or (2) the frequency of MW excitation was low around the observation site. Former possibility is found not to be a main reason to explain the frequency by assuming typical wind profiles in troposphere and upper mesosphere over Japan. Thus, frequency and spatial distribution of orographic wavy clouds were investigated by analyzing images taken by the Himawari-8 geostationary meteorological satellite in 2018. The number of days when wavy clouds were detected in the troposphere around the observation site (Kanto area) was about a quarter of that around the Tohoku area. This result indicates that frequency of over-mountain flow which is thought to be a source of excitation of MWs is low in Kanto area. We also found that the angle between the horizontal wind direction in troposphere and the orientation of the mountain ridge is a good proxy for the occurrence of orographic wavy clouds, i.e., excitation of MWs. We applied this proxy to the topography around the world to investigate regions where MWs are likely to be excited frequently throughout the year to discuss the likelihood of "MW hotspots" at various spatial scale. Graphical Abstract


MAUSAM ◽  
2022 ◽  
Vol 46 (2) ◽  
pp. 111-126
Author(s):  
P. KUMAR ◽  
M. P. SINGH ◽  
N. PADMANABHAN ◽  
N. NATARAJAN

ABSTRACT. The effect of latent heat release on windward side of the mountain due to precipitation over the mountain waves has been studied assuming wind speed changing with respect to height. A  single profile based on actual Peshawar data has been considered for the analysis. A thin level of heating has been chosen at medium level for the purpose of study. For non-hydrostatic case it is observed that in non-precipitation case when balanced heating/cooling takes place on the windward/leeward side or the mountain the effect of heating is negligibly small. However, for precipitation case downward displacement on the windward side, just above the level of heating. is obvious. Interference with the upstream current by the waves, produced due to elevated thermal forcing and reflected from the around surface is attributed to this phenomenon. Increase in the wave amplitude on the lee-side of the mountain as compared to non-precipitating case is also found. It is also revealed that higher the level or heating lesser the amplitude of the induced disturbance. 4.5 km agl is the level which is maximum affected by heating in general.   For large and shallow mountainous terrains. hydrostatic solutions have been produced for three different levels of heating for sheared flow, Streamlines have been drawn. On comparison with no shear case, it may be inferred that shear effect is opposite to that due to thermal forcing.


MAUSAM ◽  
2021 ◽  
Vol 51 (3) ◽  
pp. 245-254
Author(s):  
P. KUMAR

NOAA (AVHRR) imageries have been studied for four years from 1982 to 1985. Overlapping wave zones in different imageries of the same fortnight have been given successively higher weightage in the scale of 1 to 7. Different monochromatic hatching scheme for different weight has been adopted. Direction of wind at the level of wave and its wavelength has also been marked over the region. Thus, the climatology has been documented into 24 fortnights. The following two periods emerge, while waves are generally seen over the region.   16 November to 15 April- This includes Winter Season upto the beginning of pre-monsoon.   01 June to 15 October -This includes Southwest monsoon upto the third week of postmonsoon.   The occurrence of lee waves during the transition period is less. They are the second fortnight of April till the end of May and the second fortnight of October till the middle of November. A scrupulous observation shows that during both the periods (i) and (ii) mentioned above there is systematic eastward shift of the leewave zones with gradual induction of different airmasses over Indian subcontinent from beginning till end. A pictorial representation of the waves over India (West of 90° E Long.) is presented here.


MAUSAM ◽  
2021 ◽  
Vol 33 (2) ◽  
pp. 265-266
Author(s):  
K. C. SINHA RAY ◽  
U. S. DE

2021 ◽  
Author(s):  
Satoshi Ishii ◽  
Yoshihiro Tomikawa ◽  
Masahiro Okuda ◽  
Hidehiko Suzuki

Abstract Imaging observations of OH airglow were conducted at Meiji University, Japan (IN, mE), from May 2018 to December 2019. Mountainous areas, including Mt. Fuji, are located to the west of the imager, and westerly winds are dominant in the lower atmosphere throughout the year. Mountain waves (MWs) are generated on the leeward sides of mountains and occasionally propagate to the upper atmosphere. However, during the observation period (about 1 year and 8 months), only four possible MW events were identified. Based on previous reports, this incidence is considerably lower than expected. There are two possible reasons for the low incidence of MW events: (1) The frequency of MW excitation is small in the lower layers of the atmosphere, and/or (2) MWs do not propagate easily to the upper mesosphere due to background wind conditions. This study verified the likelihood of the former case. Under over-mountain airflow conditions, wavy clouds are often generated on the leeward side. Since over-mountain airflow is essential for the excitation of MWs, the frequency of wavy clouds in the lower atmosphere can be regarded as a measure of the occurrence of MWs. The frequency and spatial distribution of MWs around Japan were investigated by detecting the wavy clouds from color images taken by the Himawari-8 geostationary meteorological satellite (GSM-8) for one year in 2018. The wavy clouds were detected on more than 70 days a year around the Tohoku region, but just 20 days a year around Mt. Fuji. This suggests that few MWs are generated around Mt. Fuji. The differences between these two regions were examined focusing on the relationship between the local topography and dominant horizontal wind fields in the lower atmosphere. Specifically, the findings showed that the angle between the dominant horizontal wind direction and the orientation of the mountain ridge is a good proxy of the occurrence of wavy clouds, i.e., excitation of MWs in mountainous areas. We have also applied this proxy to topography in other areas of the world to investigate areas where MWs would be occurring frequently. Finally, we discuss the likelihood of "MW hotspots" at various spatial scales in the world.


2021 ◽  
Vol 21 (13) ◽  
pp. 10393-10412
Author(s):  
Markus Geldenhuys ◽  
Peter Preusse ◽  
Isabell Krisch ◽  
Christoph Zülicke ◽  
Jörn Ungermann ◽  
...  

Abstract. To better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography–jet interaction is discussed. In a case study, we identify the source of a GW observed over Greenland on 10 March 2016 during the POLSTRACC (POLar STRAtosphere in a Changing Climate) aircraft campaign. Measurements were taken with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) instrument deployed on the High Altitude Long Range (HALO) German research aircraft. The measured infrared limb radiances are converted into a 3D observational temperature field through the use of inverse modelling and limited-angle tomography. We observe GWs along a transect through Greenland where the GW packet covers ≈ 1/3 of the Greenland mainland. GLORIA observations indicate GWs between 10 and 13 km of altitude with a horizontal wavelength of 330 km, a vertical wavelength of 2 km and a large temperature amplitude of 4.5 K. Slanted phase fronts indicate intrinsic propagation against the wind, while the ground-based propagation is with the wind. The GWs are arrested below a critical layer above the tropospheric jet. Compared to its intrinsic horizontal group velocity (25–72 m s−1) the GW packet has a slow vertical group velocity of 0.05–0.2 m s−1. This causes the GW packet to propagate long distances while spreading over a large area and remaining constrained to a narrow vertical layer. A plausible source is not only orography, but also out-of-balance winds in a jet exit region and wind shear. To identify the GW source, 3D GLORIA observations are combined with a gravity wave ray tracer, ERA5 reanalysis and high-resolution numerical experiments. In a numerical experiment with a smoothed orography, GW activity is quite weak, indicating that the GWs in the realistic orography experiment are due to orography. However, analysis shows that these GWs are not mountain waves. A favourable area for spontaneous GW emission is identified in the jet by the cross-stream ageostrophic wind, which indicates when the flow is out of geostrophic balance. Backwards ray-tracing experiments trace into the jet and regions where the Coriolis and the pressure gradient forces are out of balance. The difference between the full and a smooth-orography experiment is investigated to reveal the missing connection between orography and the out-of-balance jet. We find that this is flow over a broad area of elevated terrain which causes compression of air above Greenland. The orography modifies the wind flow over large horizontal and vertical scales, resulting in out-of-balance geostrophic components. The out-of-balance jet then excites GWs in order to bring the flow back into balance. This is the first observational evidence of GW generation by such an orography–jet mechanism.


2021 ◽  
Vol 21 (12) ◽  
pp. 9515-9543
Author(s):  
Michael Weimer ◽  
Jennifer Buchmüller ◽  
Lars Hoffmann ◽  
Ole Kirner ◽  
Beiping Luo ◽  
...  

Abstract. Polar stratospheric clouds (PSCs) are a driver for ozone depletion in the lower polar stratosphere. They provide surface for heterogeneous reactions activating chlorine and bromine reservoir species during the polar night. The large-scale effects of PSCs are represented by means of parameterisations in current global chemistry–climate models, but one process is still a challenge: the representation of PSCs formed locally in conjunction with unresolved mountain waves. In this study, we investigate direct simulations of PSCs formed by mountain waves with the ICOsahedral Nonhydrostatic modelling framework (ICON) with its extension for Aerosols and Reactive Trace gases (ART) including local grid refinements (nesting) with two-way interaction. Here, the nesting is set up around the Antarctic Peninsula, which is a well-known hot spot for the generation of mountain waves in the Southern Hemisphere. We compare our model results with satellite measurements of PSCs from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and gravity wave observations of the Atmospheric Infrared Sounder (AIRS). For a mountain wave event from 19 to 29 July 2008 we find similar structures of PSCs as well as a fairly realistic development of the mountain wave between the satellite data and the ICON-ART simulations in the Antarctic Peninsula nest. We compare a global simulation without nesting with the nested configuration to show the benefits of adding the nesting. Although the mountain waves cannot be resolved explicitly at the global resolution used (about 160 km), their effect from the nested regions (about 80 and 40 km) on the global domain is represented. Thus, we show in this study that the ICON-ART model has the potential to bridge the gap between directly resolved mountain-wave-induced PSCs and their representation and effect on chemistry at coarse global resolutions.


Sign in / Sign up

Export Citation Format

Share Document