minimal flavour violation
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Otto Eberhardt ◽  
Víctor Miralles ◽  
Antonio Pich

Abstract We consider a simple extension of the electroweak theory, incorporating one SU(2)L doublet of colour-octet scalars with Yukawa couplings satisfying the principle of minimal flavour violation. Using the HEPfit package, we perform a global fit to the available data, including all relevant theoretical constraints, and extract the current bounds on the model parameters. Coloured scalars with masses below 1.05 TeV are already excluded, provided they are not fermiophobic. The mass splittings among the different (charged and CP-even and CP-odd neutral) scalars are restricted to be smaller than 20 GeV. Moreover, for scalar masses smaller than 1.5 TeV, the Yukawa coupling of the coloured scalar multiplet to the top quark cannot exceed the one of the SM Higgs doublet by more than 80%. These conclusions are quite generic and apply in more general frameworks (without fine tunings). The theoretical requirements of perturbative unitarity and vacuum stability enforce relevant constraints on the quartic scalar potential parameters that are not yet experimentally tested.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Joao M. Alves ◽  
Francisco J. Botella ◽  
Gustavo C. Branco ◽  
Fernando Cornet-Gomez ◽  
Miguel Nebot

AbstractWe analyse a possible connection between CP violations in the quark and lepton sectors, parametrised by the CKM and PMNS phases. If one assumes that CP breaking arises from complex Yukawa couplings, both in the quark and lepton sectors, the above connection is not possible in general, since Yukawa couplings in the two sectors have independent flavour structures. We show that both the CKM and PMNS phases can instead be generated by a vacuum phase in a class of two Higgs doublet models, and in this case a connection may be established. This scenario requires the presence of scalar FCNC at tree level, both in the quark and lepton sectors. The appearance of these FCNC is an obstacle and a blessing. An obstacle since one has to analyse which models are able to conform to the strict experimental limits on FCNC, both in the quark and lepton sectors. A blessing, because this class of models is falsifiable since FCNC arise at a level which can be probed experimentally in the near future, specially in the processes $$\mathrm{h}\rightarrow e^\pm \tau ^\mp $$ h → e ± τ ∓ and $$t\rightarrow \mathrm{h}c$$ t → h c . The connection between CP violations in CKM and PMNS is explicitely illustrated in models with Minimal Flavour Violation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Monika Blanke ◽  
Priscilla Pani ◽  
Giacomo Polesello ◽  
Giulia Rovelli

Abstract Models incorporating flavoured dark matter provide an elegant solution to the dark matter problem, evading the tight LHC and direct direction constraints on simple WIMP models. In Dark Minimal Flavour Violation, a simple framework of flavoured dark matter with new sources of flavour violation, the constraints from thermal freeze-out, direct detection experiments, and flavour physics create well-defined benchmark scenarios for these models. We study the LHC phenomenology of four such scenarios, focusing on final states where a single top quark is produced accompanied by no jets, one jet from the fragmentation of light quarks or a b-tagged jet. For each of these signatures we develop a realistic LHC analysis, and we show that the proposed analyses would increase the parameter space coverage for the four benchmarks, compared to existing flavour-conserving LHC analyses. Finally we show the projected discovery potential of the considered signatures for the full LHC statistics at 14 TeV, and for the High Luminosity LHC.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Nabarun Chakrabarty ◽  
Indrani Chakraborty ◽  
Dilip Kumar Ghosh

AbstractColor-octet scalars arise in various Grand Unification scenarios and also in other models of new physics. They are also postulated for minimal flavour violation. Purely phenomenological imprints of such scalars are therefore worth looking at. Motivated by this, we perform a complete one-loop calculation of the $$H^+ \rightarrow W^+ Z (\gamma )$$ H + → W + Z ( γ ) decay in a two Higgs doublet model augmented by a color-octet $$SU(2)_L$$ S U ( 2 ) L scalar doublet. The computation is conveniently segregated into colorless and colored components. The color-octet part of the amplitude, being scaled by the color-factor, provides an overall enhancement to the form factors. Crucial constraints from perturbative unitarity, positivity of the scalar potential, oblique parameters, Higgs signal strengths and direct search of a charged Higgs and color-octet scalars are folded-in into the analysis. Sensitivity of the loop-induced $$H^+ \rightarrow W^+ Z (\gamma )$$ H + → W + Z ( γ ) vertex to other model parameters is elucidated. Finally, the prospect of observing a loop-induced $$H^+ \rightarrow W^+ Z (\gamma )$$ H + → W + Z ( γ ) interaction at the future hadronic collisions is also discussed.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Rafael Aoude ◽  
Tobias Hurth ◽  
Sophie Renner ◽  
William Shepherd

Abstract We investigate the information that can be gained by including flavour data in fits of the Standard Model Effective Field Theory (SMEFT) with the assumption of Minimal Flavour Violation (MFV), allowing — as initial conditions at the high scale — leading terms in spurionic Yukawas only. Starting therefore from a theory with no tree level flavour changing neutral currents at the scale of new physics, we calculate effects in flavour changing processes at one loop, and the resulting constraints on linear combinations of SMEFT coefficients, consistently parameterising the electroweak parameters and the CKM within the SMEFT. By doing a global fit including electroweak, Higgs and low energy precision measurements among others, we show that flavour observables put strong constraints on previously unconstrained operator directions. The addition of flavour data produces four independent constraints at order TeV or above on otherwise flat directions; reducing to three when complete U(3)5 flavour symmetry is assumed. Our findings demonstrate that flavour remains a stringent test for models of new physics, even in the most flavourless scenario.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
F. Arias-Aragón ◽  
C. Bouthelier-Madre ◽  
J. M. Cano ◽  
L. Merlo

AbstractA bottom-up approach has been adopted to identify a flavour model that agrees with present experimental measurements. The charged fermion mass hierarchies suggest that only the top Yukawa term should be present at the renormalisable level. Similarly, describing the lightness of the active neutrinos through the type-I Seesaw mechanism, right-handed neutrino mass terms should also be present at the renormalisable level. The flavour symmetry of the Lagrangian including the fermionic kinetic terms and only the top Yukawa is then a combination of U(2) and U(3) factors. Once considering the Majorana neutrino terms, the associated symmetry is O(3). Lighter charged fermion and active neutrino masses and quark and lepton mixings arise considering specific spurion fields à la Minimal Flavour Violation. The associated phenomenology is investigated and the model turns out to have almost the same flavour protection as the Minimal Flavour Violation in both quark and lepton sectors. Promoting the spurions to dynamical fields, the associated scalar potential is also studied and a minimum is identified such that fermion masses and mixings are correctly reproduced. Very precise predictions for the Majorana phases follow from the minimisation of the scalar potential and thus the neutrinoless-double-beta decay may represent a smoking gun for the model.


2019 ◽  
Vol 2019 (3) ◽  
Author(s):  
Jordan Bernigaud ◽  
Björn Herrmann ◽  
Stephen F. King ◽  
Samuel J. Rowley

2016 ◽  
Vol 758 ◽  
pp. 18-25 ◽  
Author(s):  
Mark D. Goodsell ◽  
Kilian Nickel ◽  
Florian Staub

Sign in / Sign up

Export Citation Format

Share Document