scholarly journals Covering classes and 1-tilting cotorsion pairs over commutative rings

2021 ◽  
Vol 33 (3) ◽  
pp. 601-629
Author(s):  
Silvana Bazzoni ◽  
Giovanna Le Gros

Abstract We are interested in characterising the commutative rings for which a 1-tilting cotorsion pair ( 𝒜 , 𝒯 ) {(\mathcal{A},\mathcal{T})} provides for covers, that is when the class 𝒜 {\mathcal{A}} is a covering class. We use Hrbek’s bijective correspondence between the 1-tilting cotorsion pairs over a commutative ring R and the faithful finitely generated Gabriel topologies on R. Moreover, we use results of Bazzoni–Positselski, in particular a generalisation of Matlis equivalence and their characterisation of covering classes for 1-tilting cotorsion pairs arising from flat injective ring epimorphisms. Explicitly, if 𝒢 {\mathcal{G}} is the Gabriel topology associated to the 1-tilting cotorsion pair ( 𝒜 , 𝒯 ) {(\mathcal{A},\mathcal{T})} , and R 𝒢 {R_{\mathcal{G}}} is the ring of quotients with respect to 𝒢 {\mathcal{G}} , we show that if 𝒜 {\mathcal{A}} is covering, then 𝒢 {\mathcal{G}} is a perfect localisation (in Stenström’s sense [B. Stenström, Rings of Quotients, Springer, New York, 1975]) and the localisation R 𝒢 {R_{\mathcal{G}}} has projective dimension at most one as an R-module. Moreover, we show that 𝒜 {\mathcal{A}} is covering if and only if both the localisation R 𝒢 {R_{\mathcal{G}}} and the quotient rings R / J {R/J} are perfect rings for every J ∈ 𝒢 {J\in\mathcal{G}} . Rings satisfying the latter two conditions are called 𝒢 {\mathcal{G}} -almost perfect.

2009 ◽  
Vol 08 (05) ◽  
pp. 601-615
Author(s):  
JOHN D. LAGRANGE

If {Ri}i ∈ I is a family of rings, then it is well-known that Q(Ri) = Q(Q(Ri)) and Q(∏i∈I Ri) = ∏i∈I Q(Ri), where Q(R) denotes the maximal ring of quotients of R. This paper contains an investigation of how these results generalize to the rings of quotients Qα(R) defined by ideals generated by dense subsets of cardinality less than ℵα. The special case of von Neumann regular rings is studied. Furthermore, a generalization of a theorem regarding orthogonal completions is established. Illustrative example are presented.


2017 ◽  
Vol 103 (3) ◽  
pp. 341-356 ◽  
Author(s):  
LÁSZLÓ FUCHS ◽  
SANG BUM LEE

Our main purpose is to extend several results of interest that have been proved for modules over integral domains to modules over arbitrary commutative rings $R$ with identity. The classical ring of quotients $Q$ of $R$ will play the role of the field of quotients when zero-divisors are present. After discussing torsion-freeness and divisibility (Sections 2–3), we study Matlis-cotorsion modules and their roles in two category equivalences (Sections 4–5). These equivalences are established via the same functors as in the domain case, but instead of injective direct sums $\oplus Q$ one has to take the full subcategory of $Q$-modules into consideration. Finally, we prove results on Matlis rings, i.e. on rings for which $Q$ has projective dimension $1$ (Theorem 6.4).


2008 ◽  
Vol 07 (02) ◽  
pp. 195-209 ◽  
Author(s):  
W. D. BURGESS ◽  
R. RAPHAEL

Commutative clean rings and related rings have received much recent attention. A ring R is clean if each r ∈ R can be written r = u + e, where u is a unit and e an idempotent. This article deals mostly with the question: When is the classical ring of quotients of a commutative ring clean? After some general results, the article focuses on C(X) to characterize spaces X when Qcl(X) is clean. Such spaces include cozero complemented, strongly 0-dimensional and more spaces. Along the way, other extensions of rings are studied: directed limits and extensions by idempotents.


Author(s):  
Aimin Xu

Let [Formula: see text] be either the category of [Formula: see text]-modules or the category of chain complexes of [Formula: see text]-modules and [Formula: see text] a cofibrantly generated hereditary abelian model structure on [Formula: see text]. First, we get a new cofibrantly generated model structure on [Formula: see text] related to [Formula: see text] for any positive integer [Formula: see text], and hence, one can get new algebraic triangulated categories. Second, it is shown that any [Formula: see text]-strongly Gorenstein projective module gives rise to a projective cotorsion pair cogenerated by a set. Finally, let [Formula: see text] be an [Formula: see text]-module with finite flat dimension and [Formula: see text] a positive integer, if [Formula: see text] is an exact sequence of [Formula: see text]-modules with every [Formula: see text] Gorenstein injective, then [Formula: see text] is injective.


1986 ◽  
Vol 28 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Victoria Gould

Several definitions of a semigroup of quotients have been proposed and studied by a number of authors. For a survey, the reader may consult Weinert's paper [8]. The motivation for many of these concepts comes from ring theory and the various notions of rings of quotients. We are concerned in this paper with an analogue of the classical ring of quotients, introduced by Fountain and Petrich in [3].


Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.


1971 ◽  
Vol 14 (4) ◽  
pp. 517-529 ◽  
Author(s):  
John K. Luedeman

AbstractSanderson (Canad. Math. Bull., 8 (1965), 505–513), considering a nonempty collection Σ of left ideals of a ring R, with unity, defined the concepts of “Σ-injective module” and “Σ-essential extension” for unital left modules. Letting Σ be an idempotent topologizing set (called a σ-set below) Σanderson proved the existence of a “Σ-injective hull” for any unital left module and constructed an Utumi Σ-quotient ring of R as the bicommutant of the Σ-injective hull of RR. In this paper, we extend the concepts of “Σinjective module”, “Σ-essentialextension”, and “Σ-injective hull” to modules over arbitrary rings. An overring Σ of a ring R is a Johnson (Utumi) left Σ-quotient ring of R if RR is Σ-essential (Σ-dense) in RS. The maximal Johnson and Utumi Σ-quotient rings of R are constructed similar to the original method of Johnson, and conditions are given to insure their equality. The maximal Utumi Σquotient ring U of R is shown to be the bicommutant of the Σ-injective hull of RR when R has unity. We also obtain a σ-set UΣ of left ideals of U, generated by Σ, and prove that Uis its own maximal Utumi UΣ-quotient ring. A Σ-singular left ideal ZΣ(R) of R is defined and U is shown to be UΣ-injective when Z Σ(R) = 0. The maximal Utumi Σ-quotient rings of matrix rings and direct products of rings are discussed, and the quotient rings of this paper are compared with these of Gabriel (Bull. Soc. Math. France, 90 (1962), 323–448) and Mewborn (Duke Math. J. 35 (1968), 575–580). Our results reduce to those of Johnson and Utumi when 1 ∊ R and Σ is taken to be the set of all left ideals of R.


1974 ◽  
Vol 26 (5) ◽  
pp. 1228-1233 ◽  
Author(s):  
William Schelter

We investigate here the notion of a topological ring of quotients of a topological ring with respect to an arbitrary Gabriel (idempotent) filter of right ideals. We describe the topological ring of quotients first as a subring of the algebraic ring of quotients, and then show it is a topological bicommutator of a topological injective R-module. Unlike R. L. Johnson in [6] and F. Eckstein in [2] we do not always make the ring an open subring of its ring of quotients. This would exclude examples such as C(X), the ring of continuous real-valued functions on a compact space, and its ring of quotients as described in Fine, Gillman and Lambek [3].


1975 ◽  
Vol 18 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Jurgen Rompke

A well-known theorem which goes back to R. E. Johnson [4], asserts that if R is a ring then Q(R), its maximal ring of quotients is regular (in the sense of v. Neumann) if and only if the singular ideal of R vanishes. In the theory of semigroups a natural question is therefore the following: Do there exist properties which characterize those semigroups whose maximal semigroups of quotients are regular? Partial answers to this question have been given in [3], [7] and [8]. In this paper we completely solve the commutative case, i.e. we give necessary and sufficient conditions for a commutative semigroup S in order that Q(S), the maximal semigroup of quotients, is regular. These conditions reflect very closely the property of being semiprime, which in the theory of commutative rings characterizes those rings which have a regular ring of quotients.


2011 ◽  
Vol 54 (3) ◽  
pp. 783-797 ◽  
Author(s):  
Gang Yang ◽  
Zhongkui Liu

AbstractWe show that if the given cotorsion pair $(\mathcal{A},\mathcal{B})$ in the category of modules is complete and hereditary, then both of the induced cotorsion pairs in the category of complexes are complete. We also give a cofibrantly generated model structure that can be regarded as a generalization of the projective model structure.


Sign in / Sign up

Export Citation Format

Share Document