replication kinetic
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Lisa Bauer ◽  
Bas Lendemeijer ◽  
Lonneke Leijten ◽  
Carmen W. E. Embregts ◽  
Barry Rockx ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with a wide variety of neurological complications. Even though SARS-CoV-2 is rarely detected in the central nervous system (CNS) or cerebrospinal fluid, evidence is accumulating that SARS-CoV-2 might enter the CNS via the olfactory nerve. However, what happens after SARS-CoV-2 enters the CNS is poorly understood. Therefore, we investigated the replication kinetics, cell tropism, and associated immune responses of SARS-CoV-2 infection in different types of neural cultures derived from human induced pluripotent stem cells (hiPSCs). SARS-CoV-2 was compared to the neurotropic and highly pathogenic H5N1 influenza A virus. SARS-CoV-2 infected a minority of individual mature neurons, without subsequent virus replication and spread, despite ACE2, TMPRSS2 and NPR1 expression in all cultures. However, this sparse infection did result in the production of type-III-interferons and IL-8. In contrast, H5N1 virus replicated and spread very efficiently in all cell types in all cultures. Taken together, our findings support the hypothesis that neurological complications might result from local immune responses triggered by virus invasion, rather than abundant SARS-CoV-2 replication in the CNS.



2015 ◽  
Vol 9 (1) ◽  
pp. 7-12
Author(s):  
Zahra Jamshidi Navroud ◽  
Shahla Shahsavandi ◽  
Mohsen Firouzi ◽  
◽  
◽  
...  


2008 ◽  
Vol 48 ◽  
pp. S284
Author(s):  
T. Tsertsvadze ◽  
L. Sharvadze ◽  
N. Gochitashvili ◽  
M. Karchava ◽  
A. Abutidze ◽  
...  


2006 ◽  
Vol 87 (4) ◽  
pp. 961-965 ◽  
Author(s):  
József Tözsér ◽  
Sergey Shulenin ◽  
Matthew R. Young ◽  
Carlton J. Briggs ◽  
Stephen Oroszlan

The genetic stability of attenuated Human immunodeficiency virus 1 (HIV-1) variants harbouring mutations (Gly or Lys) of Asn17, the protease-cleavage site of the proximal zinc finger of the nucleocapsid protein, was studied. All possible codons for the Gly mutants were tested as starting sequences. Long-term replication assays revealed that the mutants were unstable; mutations of Gly17 to Arg, Ala, Ser and Cys, as well as a Lys17Asn reversion, were observed. Replication kinetic assays in H9 cells revealed that the replication of Ala, Ser and Arg mutants was improved substantially compared with the Gly variant; the infectivity of Ala17 and Ser17 viruses was equal to, and that of Arg17 was almost equal to, the infectivity of the wild-type virus. Kinetic analysis of the cleavage of oligopeptides representing the corresponding nucleocapsid-cleavage sites revealed that all mutations improved cleavability, in good agreement with the previously proposed role of nucleocapsid cleavage in HIV-1 replication.



Sign in / Sign up

Export Citation Format

Share Document