catecholaminergic system
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Vol 12 ◽  
Author(s):  
Juliette Bedrossiantz ◽  
Marina Bellot ◽  
Pol Dominguez-García ◽  
Melissa Faria ◽  
Eva Prats ◽  
...  

Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing at 20 and 40 mg/L for 48 h, the later METH concentration was selected for developing the model and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure, followed 3 h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3 h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48 h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse.


2021 ◽  
Vol 15 ◽  
Author(s):  
Janina Borgonovo ◽  
Patricio Ahumada-Galleguillos ◽  
Alejandro Oñate-Ponce ◽  
Camilo Allende-Castro ◽  
Pablo Henny ◽  
...  

The catecholaminergic system has received much attention based on its regulatory role in a wide range of brain functions and its relevance in aging and neurodegenerative diseases. In the present study, we analyzed the neuroanatomical distribution of catecholaminergic neurons based on tyrosine hydroxylase (TH) immunoreactivity in the brain of adult Nothobranchius furzeri. In the telencephalon, numerous TH+ neurons were observed in the olfactory bulbs and the ventral telencephalic area, arranged as strips extending through the rostrocaudal axis. We found the largest TH+ groups in the diencephalon at the preoptic region level, the ventral thalamus, the pretectal region, the posterior tuberculum, and the caudal hypothalamus. In the dorsal mesencephalic tegmentum, we identified a particular catecholaminergic group. The rostral rhombencephalon housed TH+ cells in the locus coeruleus and the medulla oblongata, distributing in a region dorsal to the inferior reticular formation, the vagal lobe, and the area postrema. Finally, scattered TH+ neurons were present in the ventral spinal cord and the retina. From a comparative perspective, the overall organization of catecholaminergic neurons is consistent with the general pattern reported for other teleosts. However, N. furzeri shows some particular features, including the presence of catecholaminergic cells in the midbrain. This work provides a detailed neuroanatomical map of the catecholaminergic system of N. furzeri, a powerful aging model, also contributing to the phylogenetic understanding of one of the most ancient neurochemical systems.


2021 ◽  
Vol 65 (s1) ◽  
Author(s):  
Pilar Marcos ◽  
Rafael Coveñas

Several cholinergic regions have been detected in the brainstem of mammals. In general, these regions are constant among different species, and the nuclear complement is maintained in animals belonging to the same order. The cholinergic system of the brainstem has been partially described in Cetartiodactyla, except for the medulla oblongata. In this work carried out in the alpaca, the description of the cholinergic regions in this order is completed by the immunohistochemical detection of the enzyme choline acetyltransferase (ChAT). In addition, using double immunostaining techniques, the relationship between the cholinergic system and the distribution of calcitonin gene-related peptide (CGRP) previously described is analysed. Although these two substances are found in several brainstem regions, the coexistence in the same cell bodies was observed only in the laterodorsal tegmental nucleus, the nucleus ambiguus and the reticular formation. These results suggest that the interaction between ChAT and CGRP may be important in the regulation of voluntary movements, the control of rapid eye movement sleep and states of wakefulness as well as in reward mechanisms. Comparing the present results with others previously obtained by our group regarding the catecholaminergic system in the alpaca brainstem, it seems that CGRP may be more functionally related to the latter system than to the cholinergic system.


2021 ◽  
Vol 1 ◽  
Author(s):  
Arumoy Chatterjee ◽  
Deepika Bais ◽  
Axel Brockmann ◽  
Divya Ramesh

In honey bees search behavior occurs as social and solitary behavior. In the context of foraging, searching for food sources is performed by behavioral specialized foragers, the scouts. When the scouts have found a new food source, they recruit other foragers (recruits). These recruits never search for a new food source on their own. However, when the food source is experimentally removed, they start searching for that food source. Our study provides a detailed description of this solitary search behavior and the variation of this behavior among individual foragers. Furthermore, mass spectrometric measurement showed that the initiation and performance of this solitary search behavior is associated with changes in glutamate, GABA, histamine, aspartate, and the catecholaminergic system in the optic lobes and central brain area. These findings strikingly correspond with the results of an earlier study that showed that scouts and recruits differ in the expression of glutamate and GABA receptors. Together, the results of both studies provide first clear support for the hypothesis that behavioral specialization in honey bees is based on adjusting modulatory systems involved in solitary behavior to increase the probability or frequency of that behavior.


2020 ◽  
Vol 164 ◽  
pp. 325-333
Author(s):  
Sajwan-Khatri Mamta ◽  
Chenichery Sudhakumari ◽  
Hirohiko Kagawa ◽  
Aparna Dutta-Gupta ◽  
Balasubramanian Senthilkumaran

2020 ◽  
Author(s):  
Lorena Cuenca-Bermejo ◽  
Pilar Almela ◽  
Pablo Gallo-Soljancic ◽  
Jose E. Yuste ◽  
Vicente de Pablos ◽  
...  

Abstract Background: The impact of age-associated disorders is increasing as the life expectancy of the population increments. Cardiovascular diseases and neurodegenerative disorders, such as Parkinson’s disease, have the highest social and economic burden and increasing evidence show interrelations between them. Particularly, dysfunction of the cardiovascular nervous system is part of the dysautonomic symptoms of Parkinson’s disease, although more studies are needed to elucidate the role of cardiac function on it . Methods: We analyzed the dopaminergic system in the nigrostriatal pathway of Parkinsonian and dyskinetic monkeys and the expression of some key proteins in the metabolism and synthesis of catecholamines in the heart: total and phosphorylated (phospho) tyrosine hydroxylase (TH), and membrane (MB) and soluble (S) isoforms of catechol-O-methyl transferase (COMT). Results: The number of dopaminergic neurons in the Substantia Nigra pars compacta and the optical density of TH+ fibers and dopamine transporter in the striatum were significantly decreased in all MPTP-intoxicated monkeys. MPTP- and MPTP+L-DOPA-treated animals also showed a decrease in total TH expression in both right (RV) and left ventricle (LV). We found a significant increase of phospho-TH in both groups (MPTP and MPTP+L-DOPA) in the LV, while this increase was only observed in MPTP-treated monkeys in the RV. MB-COMT analysis showed a very significant increase of this isoform in the LV of MPTP- and MPTP+L-DOPA-treated animals. However, we found no significant differences in S-COMT levels. These data suggest that MB-COMT is the main isoform implicated in the cardiac noradrenergic changes observed after MPTP treatment, suggesting an increase in NA metabolism. Moreover, the increase of TH activity indicates that cardiac noradrenergic neurons still respond despite MPTP treatment. Conclusions: These results could help to elucidate the possible role of alterations in the catecholaminergic system that can contribute to noradrenergic deficiency in the hearts of PD patients. Therefore, this information might be relevant to clinical field, contributing to the therapeutic design of the disease.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alessandro Soranzo ◽  
Luca Aquili

Abstract Animal studies have demonstrated that catecholamines regulate several aspects of fear conditioning. In humans, however, pharmacological manipulations of the catecholaminergic system have been scarce, and their primary focus has been to interfering with catecholaminergic activity after fear acquisition or expression had taken place, using L-Dopa, primarily, as catecholaminergic precursor. Here, we sought to determine if putative increases in presynaptic dopamine and norepinephrine by tyrosine administered before conditioning could affect fear expression. Electrodermal activity (EDA) of 46 healthy participants (24 placebo, 22 tyrosine) was measured in an instructed fear task. Results showed that tyrosine abolished fear expression compared to placebo. Importantly, tyrosine did not affect EDA responses to the aversive stimulus (UCS) or alter participants’ mood. Therefore, the effect of tyrosine on fear expression cannot be attributed to these factors. Taken together, these findings provide evidence that the catecholaminergic system influences fear expression in humans.


2019 ◽  
Vol 47 (1) ◽  
Author(s):  
Esterina Fazio ◽  
Cristina Cravana ◽  
Antonio Giuliano ◽  
Pietro Medica

Background: The hypothalamic-pituitary-adrenal (HPA) axis undergoes adaptations throughout housing system that might contribute to the avoidance of adverse effects of welfare status in dogs housed in a shelter. Nevertheless, the influence of housing systems and stabling time on glucose and PCV changes is little known. The purpose of the present study was to evaluate the patterns of cortisol, glucose and PCV in dogs housed in a kennel and normal environments, evaluating the differences between housing systems, by taking account the different stabling time and sex. Materials, Methods & Results:  The study comprised 98 cross-breed dogs, aged 4 ± 1.5 years, lodged in a kennel (observational group I: N= 61, 29 females and 27 males), in paired household dogs (control group II: N= 25, 13 females and 12 males) and in unpaired household dogs (control group III: N= 12, 6 females and 6 males). Females of both groups were spayed. The subjects were studied on the basis of different stabling times, ranged among <1 year, 2 years and 4 years, and different sex.Discussion: This observational study showed that kennelled males lodged for 2 (P < 0.01) and 4 (P < 0.001) years showed lower cortisol concentrations than males lodged <1 year, males lodged for <1 year (P < 0.001) showed higher cortisol concentrations than females; males lodged for 4 year showed lower cortisol concentrations (P < 0.01) than females. Kennelled females lodged for 4 year showed higher PCV values (P < 0.001) than females lodged for <1 year. Paired and unpaired household females and males lodged for 4 years showed lower cortisol concentrations (P < 0.01) than 2 years and <1 year. Paired and unpaired household females and males lodged for short-, medium- and long-term times showed higher glucose concentrations (P < 0.001) than kennelled dogs. This study showed significant changes of circulating cortisol, glucose and PCV values inter- and intra-groups, according to different housing systems, stabling time and sex. The magnitude of cortisol decreases after 2 and 4 years of stabling time in kennelled male dogs could suggest a stimulus-response relationship, probably due to adaptive responses. Interestingly enough in this observational study was that the exact consummatory event could be represented by the long stabling time itself, observed only in males. Moreover, the significant differences of cortisol concentrations between males and females in group I after a stabling time of <1 and 4 years confirm the wide variability of HPA activity independent of the different sex of dogs. The physiological higher glucose concentrations in household dogs than kennel dogs showed that the normal home environment offers probably more rich stimuli than kennel, independent of stabling times and sex. It is possible to suppose that the housing system of dogs also results in significant rise of organ reserve and adaptability, presumably due at early greatest in functional changes in the catecholaminergic system and related increased hepatic glycogenolysis and gluconeogenesis. Concerning the PCV changes, data obtained confirmed the disagreement among authors about sex differences in the circulating mass of erythrocytes according to different age and sex. In conclusion, this is an observational study on the adaptive responses of circulating cortisol, glucose and PCV patterns to different housing systems in both kennel and household, leading to the question of physiological relevance concerning the effects of different stabling, according to the quality of dogs’ life.


Sign in / Sign up

Export Citation Format

Share Document