diquark model
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 40)

H-INDEX

28
(FIVE YEARS 5)

2021 ◽  
Vol 104 (11) ◽  
Author(s):  
Jesse F. Giron ◽  
Richard F. Lebed
Keyword(s):  

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Ye Xing ◽  
Yuekun Niu

AbstractWe study the masses and lifetimes of doubly charmed pentaquark $$P_{cc{\bar{q}}qq}(q=u,d,s)$$ P c c q ¯ q q ( q = u , d , s ) primarily. The operation of masses carried out by the doubly heavy triquark-diquark model, whose results suggests the existence of stable states $$cc{\bar{s}} ud$$ c c s ¯ u d with the parity $$J^P=\frac{1}{2}^-$$ J P = 1 2 - . The roughly calculation about lifetimes show the short magnitudes, $$(4.65^{+0.71}_{-0.55})\times 10^{-13}s $$ ( 4 . 65 - 0.55 + 0.71 ) × 10 - 13 s for the parity $$J^P=\frac{1}{2}^-$$ J P = 1 2 - and $$(0.93^{+0.14}_{-0.11})\times 10^{-12} s $$ ( 0 . 93 - 0.11 + 0.14 ) × 10 - 12 s for $$J^P=\frac{3}{2}^-$$ J P = 3 2 - . Since the pentaquark $$cc{\bar{s}} ud$$ c c s ¯ u d is interpreted as the stable bound states against strong decays, then we will focus on the production and possible decay channels of the pentaquark in the next step, the study would be fairly valuable supports for future experiments. For completeness, we systematically studied the production from $$\Omega _{ccc}$$ Ω ccc and the decay modes in the framework SU(3) flavor symmetry, including the processes of semi-leptonic and two body non-leptonic decays. Synthetically, we make a collection of the golden channels.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Jesse F. Giron ◽  
Richard F. Lebed ◽  
Steven R. Martinez
Keyword(s):  

2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Pan-Pan Shi ◽  
Fei Huang ◽  
Wen-Ling Wang
Keyword(s):  

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
David Arturo Amor-Quiroz ◽  
Matthias Burkardt ◽  
William Focillon ◽  
Cédric Lorcé

AbstractWe present an analytic two-loop calculation within the scalar diquark model of the potential linear and angular momenta, defined as the difference between the Jaffe-Manohar and Ji notions of linear and angular momenta. As expected by parity and time-reversal symmetries, a direct calculation confirms that the potential transverse momentum coincides with the Jaffe-Manohar (or canonical) definition of average quark transverse momentum, also known as the quark Sivers shift. We examine whether initial/final-state interactions at the origin of the Sivers asymmetry can also generate a potential angular momentum in the scalar diquark model.


2021 ◽  
Vol 103 (9) ◽  
Author(s):  
Pan-Pan Shi ◽  
Fei Huang ◽  
Wen-Ling Wang
Keyword(s):  

2021 ◽  
Vol 103 (9) ◽  
Author(s):  
Justin M. Gens ◽  
Jesse F. Giron ◽  
Richard F. Lebed

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Hui Li ◽  
Xiaoyu Wang ◽  
Yongliang Yang ◽  
Zhun Lu

AbstractWe investigate the transverse polarization of the $$\Lambda $$ Λ hyperon in the processes $$e^+e^-\rightarrow \Lambda ^\uparrow \pi ^\pm X$$ e + e - → Λ ↑ π ± X and $$e^+e^-\rightarrow \Lambda ^\uparrow K^\pm X$$ e + e - → Λ ↑ K ± X within the framework of the transverse momentum dependent (TMD) factorization. The transverse polarization is contributed by the convolution of the transversely polarizing fragmentation function (PFF) $$D_{1T}^\perp $$ D 1 T ⊥ of the lambda hyperon and the unpolarized fragmentation function $$D_1$$ D 1 of pion/kaon. We adopt the spectator diquark model result for $$D_{1T}^{\perp }$$ D 1 T ⊥ to numerically estimate the transverse polarization in $$e^+e^-\rightarrow \Lambda ^\uparrow h X$$ e + e - → Λ ↑ h X process at the kinematical region of Belle Collaboration. To implement the TMD evolution formalism of the fragmentation functions, we apply two different parametrizations on the nonperturbative Sudakov form factors associated with the fragmentation functions of the $$\Lambda $$ Λ , pion and kaon. It is found that our prediction on the polarization in the $$\Lambda \pi ^+$$ Λ π + production and $${\bar{\Lambda }} \pi ^-$$ Λ ¯ π - is consistent with the recent Belle measurement in size and sign, while the model predictions on the polarizations in $$\Lambda \pi ^-$$ Λ π - and $$\Lambda K^\pm $$ Λ K ± productions show strong disagreement with the Belle data. The reason for the discrepancies is discussed and possible approaches to improve the calculation in the future are also discussed.


2021 ◽  
Author(s):  
Alexander Parkhomenko ◽  
Ahmed Ali ◽  
Ishtiaq Ahmed ◽  
M. Jamil Aslam ◽  
Abdur Rehman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document