wetland dynamics
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 2)

Heliyon ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. e07943
Author(s):  
Tariku Zekarias ◽  
Vanum Govindu ◽  
Yechale Kebede ◽  
Abren Gelaw

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
D. Mao ◽  
Z. Wang ◽  
Y. Wang ◽  
C.-Y. Choi ◽  
M. Jia ◽  
...  

The Ramsar Convention on Wetlands is an international framework through which countries identify and protect important wetlands. Yet Ramsar wetlands are under substantial anthropogenic pressure worldwide, and tracking ecological change relies on multitemporal data sets. Here, we evaluated the spatial extent, temporal change, and anthropogenic threat to Ramsar wetlands at a national scale across China to determine whether their management is currently sustainable. We analyzed Landsat data to examine wetland dynamics and anthropogenic threats at the 57 Ramsar wetlands in China between 1980 and 2018. Results reveal that Ramsar sites play important roles in preventing wetland loss compared to the dramatic decline of wetlands in the surrounding areas. However, there are declines in wetland area at 18 Ramsar sites. Among those, six lost a wetland area greater than 100 km2, primarily caused by agricultural activities. Consistent expansion of anthropogenic land covers occurred within 43 (75%) Ramsar sites, and anthropogenic threats from land cover change were particularly notable in eastern China. Aquaculture pond expansion and Spartina alterniflora invasion were prominent threats to coastal Ramsar wetlands. The observations within China’s Ramsar sites, which in management regulations have higher levels of protection than other wetlands, can help track progress towards achieving United Nations Sustainable Development Goals (SDGs). The study findings suggest that further and timely actions are required to control the loss and degradation of wetland ecosystems.


Author(s):  
Ladina Steiner ◽  
Fran Fabra ◽  
Kimmo Rautiainen ◽  
Juha Lemmetyinen ◽  
Juval Cohen ◽  
...  

2020 ◽  
Vol 12 (18) ◽  
pp. 2995
Author(s):  
Lei Jing ◽  
Yan Zhou ◽  
Qing Zeng ◽  
Shuguang Liu ◽  
Guangchun Lei ◽  
...  

Large river floodplain systems (LRFS) are among the most diverse and dynamic ecosystems. Accurately monitoring the dynamics of LRFS over long time series is fundamental and essential for their sustainable development. However, challenges remain because the spatial distribution of LRFS is never static due to inter- and intra-annual changes in environmental conditions. In this study, we developed and tested a methodological framework to re-construct the long-term wetland dynamics in Dongting Lake, China, utilizing an unsupervised machine-learning algorithm (UMLA) on the basis of MODIS (Moderate Resolution Imaging Spectroradiometer) EVI (Enhanced Vegetation Index) time series. Our results showed that the UMLA achieved comparable performance to the time-consuming satellite image segmentation method with a Kappa coefficient of agreement greater than 0.75 and an overall accuracy over 85%. With the re-constructed annual wetland distribution maps, we found that 31.35% of wet meadows, one of most important ecological assets in the region, disappeared at an average rate of c.a. 1660 ha year−1 during the past two decades, which suggests that the Dongting Lake is losing its ecological function of providing wintering ground for migratory water birds, and remediation management actions are urgently required. We concluded that UMLA offers a fast and cost-efficient alternative to monitor ecological responses in a rapidly changing environment.


2019 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Subrina Tahsin ◽  
Stephen C. Medeiros ◽  
Arvind Singh

The dynamic response of coastal wetlands (CWs) to hydro-meteorological signals is a key indicator for understanding climate driven variations in wetland ecosystems. This study explored the response of CW dynamics to hydro-meteorological signals using time series of Landsat-derived normalized difference vegetation index (NDVI) values at six locations and hydro-meteorological time-series from 1984 to 2015 in Apalachicola Bay, Florida. Spectral analysis revealed more persistence in NDVI values for forested wetlands in the annual frequency domain, compared to scrub and emergent wetlands. This behavior reversed in the decadal frequency domain, where scrub and emergent wetlands had a more persistent NDVI than forested wetlands. The wetland dynamics were found to be driven mostly by the Apalachicola Bay water level and precipitation. Cross-spectral analysis indicated a maximum time-lag of 2.7 months between temperature and NDVI, whereas NDVI lagged water level by a maximum of 2.2 months. The quantification of persistent behavior and subsequent understanding that CW dynamics are mostly driven by water level and precipitation suggests that the severity of droughts, floods, and storm surges will be a driving factor in the future sustainability of CW ecosystems.


Sign in / Sign up

Export Citation Format

Share Document