transition form factor
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 25)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 258 ◽  
pp. 03003
Author(s):  
Sergey Mikhailov ◽  
Alexandr Pimikov ◽  
N.G. Stefanis

We study two versions of lightcone sum rules to calculate the γ*γ → π0 transition form factor (TFF) within QCD. While the standard version is based on fixed-order perturbation theory by means of a power-series expansion in the strong coupling, the new method incorporates radiative corrections by renormalization-group summation and generates an expansion within a generalized fractional analytic perturbation theory involving only analytic couplings. Using this scheme, we determine the relative nonperturbative parameters and the first two Gegenbauer coefficients of the pion distribution amplitude (DA) to obtain TFF predictions in good agreement with the preliminary BESIII data, while the best-fit pion DA satisfies the most recent lattice constraints on the second moment of the pion DA at the three-loop level.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. Albaladejo ◽  
◽  
I. Danilkin ◽  
S. Gonzàlez-Solís ◽  
D. Winney ◽  
...  

AbstractIn light of recent experimental results, we revisit the dispersive analysis of the $$\omega \rightarrow 3\pi $$ ω → 3 π decay amplitude and of the $$\omega \pi ^0$$ ω π 0 transition form factor. Within the framework of the Khuri–Treiman equations, we show that the $$\omega \rightarrow 3\pi $$ ω → 3 π Dalitz-plot parameters obtained with a once-subtracted amplitude are in agreement with the latest experimental determination by BESIII. Furthermore, we show that at low energies the $$\omega \pi ^0$$ ω π 0 transition form factor obtained from our determination of the $$\omega \rightarrow 3\pi $$ ω → 3 π amplitude is consistent with the data from MAMI and NA60 experiments.


Author(s):  
Bai-Long Hoid ◽  
Martin Hoferichter ◽  
Bastian Kubis

AbstractWe study the reaction $$e^+e^-\rightarrow \pi ^0\gamma $$ e + e - → π 0 γ based on a dispersive representation of the underlying $$\pi ^0\rightarrow \gamma \gamma ^*$$ π 0 → γ γ ∗ transition form factor. As a first application, we evaluate the contribution of the $$\pi ^0\gamma $$ π 0 γ channel to the hadronic-vacuum-polarization correction to the anomalous magnetic moment of the muon. We find $$a_\mu ^{\pi ^0\gamma }\big |_{\le 1.35\,\text {GeV}}=43.8(6)\times 10^{-11}$$ a μ π 0 γ | ≤ 1.35 GeV = 43.8 ( 6 ) × 10 - 11 , in line with evaluations from the direct integration of the data. Second, our fit determines the resonance parameters of $$\omega $$ ω and $$\phi $$ ϕ . We observe good agreement with the $$e^+e^-\rightarrow 3\pi $$ e + e - → 3 π channel, explaining a previous tension in the $$\omega $$ ω mass between $$\pi ^0\gamma $$ π 0 γ and $$3\pi $$ 3 π by an unphysical phase in the fit function. Combining both channels we find $${\bar{M}}_\omega =782.736(24)\,\text {MeV}$$ M ¯ ω = 782.736 ( 24 ) MeV and $${\bar{M}}_\phi =1019.457(20)\,\text {MeV}$$ M ¯ ϕ = 1019.457 ( 20 ) MeV for the masses including vacuum-polarization corrections. The $$\phi $$ ϕ mass agrees perfectly with the PDG average, which is dominated by determinations from the $${\bar{K}} K$$ K ¯ K channel, demonstrating consistency with $$3\pi $$ 3 π and $$\pi ^0\gamma $$ π 0 γ . For the $$\omega $$ ω mass, our result is consistent but more precise, exacerbating tensions with the $$\omega $$ ω mass extracted via isospin-breaking effects from the $$2\pi $$ 2 π channel.


Sign in / Sign up

Export Citation Format

Share Document